• Title/Summary/Keyword: Whirl Speed

Search Result 64, Processing Time 0.025 seconds

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Dynamic Characteristics of a High Speed Centrifugal Compressor using Foil Bearings (포일베어링을 사용한 고속 원심압축기의 동특성)

  • Kwon, Kye-Si;Ji, Yoo-Chul;Lee, Sang-Wook;Choi, Moon-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1450-1454
    • /
    • 2000
  • In order to understand dynamic characteristics of centrifugal compressor supported foil bearing, of which normal operating speed is about 20,000 ${\sim}$ 50,000 rpm, the rotor whirl is measured using gap sensors. Not only critical speeds of rotor system but also stability of rotor whirl, which are main concerns of the turbo compressor system, are measured using gap sensors by varying the rotating speed the rotor. The stiffness characteristics of bearing system is shown to be almost invariant according to speed variation by the measurement of eccentricity. In addition, from the directional power spectral density function of the measured vibration signal, the isotropy stiffness characteristics of foil bearing system is discussed.

  • PDF

Finite Element Formulations of the Rotor-Bearing System for Whirl Speed Analysis (로터-베어링 시스템의 훨링속도 해석을 위한 유한요소 정식화)

  • Yun, Seong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.625-630
    • /
    • 2007
  • This paper accounts for derivations and formulations of the finite element dynamic equation of the rotor-bearing system to analyze its whirling speed. It turns out to be a different form from previous researcher's because of different successive sequences of Euler angles. Correspondingly the adoption of other rotation tensor will be needed for a consistent derivation of the dynamic equation. The process of its finite element formulation with consistent mass matrix and gyroscopic matrix involves a general definition of the modal analysis or the Eigen analysis for the damped system in the inertial frame and rotating frame, respectively.

  • PDF

A Study on Synchronously Whirling Motion of Hydrodynamic Journal Bearings (저널 베어링의 동기화된 선회 운동에 관한 연구)

  • Kim, Gyeong-Ung;No, Byeong-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1432-1437
    • /
    • 2001
  • In this paper, a control algorithm which is synchronously excitating the bearing with whirl speed of rotor is employed to suppress the whirl instability and unbalance response of the rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis with the Reynolds condition. The stabilities and unbalance responses of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance response of the system can be greatly improved by synchronous control of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, for given operating condition. It is also found that the onset speed of the instability can be greatly increased by synchronous control of the bearing.

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.

A Study on the Stability Characteristics of Actively Controlled Externally Pressurized Air Journal Bearing (능동 제어되는 외부 가압 공기 베어링의 안정 특성에 관한 연구)

  • Lee, Jeong-Bae;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.543-549
    • /
    • 2000
  • Results of theoretical investigations of the stability characteristics of an actively controlled externally pressurized air journal bearing are presented. Proportional control and derivative control are used for the control algorithm of active air bearing. The stability characteristics of the actively controlled bearing operating at zero steady-state eccentricity is investigated with the step jump method. The speed at onset of instability is raised for both proportional control and derivative control of bearing. Proportional control increased the stability threshold without affecting the whirl ratio. But for derivative control of bearing, stability threshold increase is accompanied by a parallel reduction of the whirl ratio. Results show active control of bearing can be adopted for the stability improvement of air journal bearing.

A Study on Balancing of High Speed Spindle using Influence Coefficient Method (영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구)

  • Koo, Ja-Ham;Kim, In-Hwan;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Optimal Weight Design of Rotor-Bearing Systems Considering Whirl Natural Frequency and Stability (선회 고유진동수와 안정성을 고려한 회전자-베어링 시스템의 중량 최적설계)

  • 이동수;손윤호;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.639-646
    • /
    • 1995
  • The objective of this study is to minimize the weight of a damped anisotropic roto-bearing system considering whirl natural frequency and stability. The system is modeled as an assemblage of rigid disks, flexible shafts and discrete bearings. The system design variables are the crosssectional areas of shaft elements and the properties of bearings. To analyze the system, the polynomial method which is derived by rearranging the calculations performed by a transfer matrix method is adopted. For the optimization, the optimization software IDOL (Integrated Design Optimization Library) which is based on the Augmented Lagrange Multiplier (ALM) method is employed. Also, an analytical design sensitivity analysis of the system is used for high accuracy and efficiency. To demonstrate the usefulness of the proposed optimal design program incorporating analysis, design sensitivity analysis, and optimization modules, a damped anisotropic rotor-bearing system is optimized to obtain 34$ weight reduction.

A Study on Discrete Hidden Markov Model for Vibration Monitoring and Diagnosis of Turbo Machinery (터보회전기기의 진동모니터링 및 진단을 위한 이산 은닉 마르코프 모델에 관한 연구)

  • Lee, Jong-Min;Hwang, Yo-ha;Song, Chang-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.41-49
    • /
    • 2004
  • Condition monitoring is very important in turbo machinery because single failure could cause critical damages to its plant. So, automatic fault recognition has been one of the main research topics in condition monitoring area. We have used a relatively new fault recognition method, Hidden Markov Model(HMM), for mechanical system. It has been widely used in speech recognition, however, its application to fault recognition of mechanical signal has been very limited despite its good potential. In this paper, discrete HMM(DHMM) was used to recognize the faults of rotor system to study its fault recognition ability. We set up a rotor kit under unbalance and oil whirl conditions and sampled vibration signals of two failure conditions. DHMMS of each failure condition were trained using sampled signals. Next, we changed the setup and the rotating speed of the rotor kit. We sampled vibration signals and each DHMM was applied to these sampled data. It was found that DHMMs trained by data of one rotating speed have shown good fault recognition ability in spite of lack of training data, but DHMMs trained by data of four different rotating speeds have shown better robustness.

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Fluid Film Journal Bearing (능동 제어 유체 윤활 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • No, Byeong-Hu;Kim, Gyeong-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.116-121
    • /
    • 2001
  • The paper presents the dynamic characteristics of a rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional. derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axial groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The proportional control increases the stability threshold without affecting the whirl ratio. However, for the derivative control of the bearing, increase of stability threshold speed is accompanied by a parallel reduction of the whirl ratio. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results 7how the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF