• Title/Summary/Keyword: Wheel-rail

Search Result 583, Processing Time 0.023 seconds

A Study en the reduction noise level of subway running train (전동차 주행시 소음저감 방안에 관한 연구)

  • So, Jin-Sub;Yu, Yang-Ha;Kim, Chi-Tae;Lee, Sang-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.979-981
    • /
    • 2006
  • Recently as the well-being diffuse and the living standard improves. People's demand for an environment lifestyle is gradually on the rise. The major source of the subway running train is rolling noise generated by the surface condition of wheel and rail. In this study, we research trends on the reduction noise level. Further-more, special traffic Ubiquitous helps to environment technical development.

  • PDF

Vibrational Analysis of Slab Tracks Considering Wheel-Rail Interaction (차륜-레인 상호작용을 고려한 슬래브 궤도의 진동해석)

  • 이희현
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.77-87
    • /
    • 1994
  • Vibrational analysis of slab tracks for HSR(High Speed Rail) is performed in order to find dynamic characteristics and to control noise and vibration for the tracks. Wheel-rail interactive force is included in the analysis by modelling the vehicle and track as an unsprung mass and elastically-supported-double-beam respectively, and both are assumed to be connected by the Hertzian spring. From this study, it has been found that vibration in the track and the force transmitted to the infrastructure could be reduced by controlling elasticity, mass and stiffness of the track supporting system appropriately.

  • PDF

A study of CWR on railway viaduct with sharp curves (철도고가교 급곡선부 레일장대화 방안연구)

  • 이상진;김기훈;신순호;이주헌
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.415-422
    • /
    • 2000
  • The Seoul Subway Line 4 crossing downtown diagonally constructed in February 1980 and opened on October 11, 1983. The line 4 is thus able to link southern and northern parts of Seoul with the downtown as well as with the Seoul outskirts. More than 810,000 people use it everyday. Line 4 was constructed like Line 1,2,3 with ballast track system causing much maintenance cost gradually and espicially much public discontent due to wheel and rail contact noise by railway viaduct with sharp curves. CWR on railway viaduct with sharp curves, 180m$\leq$R$\leq$300m, hasn't been designed and constructed ever in domestic. Therefore in order to reduce noise and vibration caused by interaction between wheel and rail the possibility and the methods of CWR(Continuous Welded Rail) on railway viaduct with sharp curve less than R300 will lead it to the maintenance free system.

  • PDF

Running Stability Analysis on the Tail Car of KTX (KTX 후미 차량의 주행 안정성 해석)

  • Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • The running stability and safety of a railway vehicle depends on the design characteristics and the contact condition between wheel and rail. In this paper, numerical simulations using ANSYS and ADAMS were done on the basis of the experimental observations. The results show that 0.6 Hz of the tail car motion is due to the natural mode of car combination of the KTX. The effects of the conicity of wheel and the lateral stiffness of the secondary suspension on the running stability were analyzed numerically using ADAMS/RAIL. The results also show 0.6 Hz as like the experimental observations. And the adoption of the wheel of GV40(${\lambda}=0.025$) brought the sway motion at the tail cars, but XP55(${\lambda}=0.055$) did not when the secondary lateral stiffness of the KTX was greater than 0.3 MN/m.

  • PDF

Safety Evaluation of Wheel-Rail System Based on Fracture Scenarios and Fracture Mechanics (파손시나리오에 의한 차륜-레일의 파괴역학적 안전성 평가)

  • Lee, Dong-Hyung;Seo, Jung-Won;Goo, Byeung-Chun;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.80-84
    • /
    • 2006
  • Fracture mechanics approach can be severly hampered unless considerable detailed specific knowledge is available. The problem of railway wheel-rail system fatigue design is currently undertaken by using assumed conservative design procedures. However, although the failure rate is low, the consequences of any such failure can be far reaching. It has been demonstrated that the tools available for effective management have limits. In the present study, the safety evaluation based on fracture mechanics is carried out. The critical crack size and remaining lifetime are calculated on the wheel for high-speed train.

  • PDF

The Development of Third Rail Current Collecting Shoegear for Light Rail Transit (경량전철용 제 3궤조 집전장치의 시제품 개발)

  • 정락교;김연수;윤용기;이병송;이병택;이정식
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.618-625
    • /
    • 2000
  • In general, a third rail current collecting shoegear is used widely in the light rail transit system, which is more efficient than overhead pantograph. Therefore, Korean standard specifications for the light rail transit prescribes for the application of it. This paper describes the development of third rail current collecting shoegears, which is suitable to Korean situation and satisfied with Korean standard specifications, Two types are developed for steel wheel AGT system and rubber tyred AGT system, and various experiments are executed.

  • PDF

Safety Margin Evaluation of Railway wheel Based on Fracture Scenarios

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kwon, Sung Tae
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Derailment due to wheel failure would cause a tremendous social and economical cost in service operation. It is necessary to evaluate quantitatively the safety with respect to high-speed train. Although the safety of railway wheel has been ensured by an regular inspection, all critical defects cannot be detected in inspection cycles and the wheel has been replaced because a defect quickly become critical for safety. Therefore, it is important to calculate quantitatively the fracture limit and remnant life of damaged railway wheel in wheel-rail system. In present paper, the critical crack size of wheel for high-speed train is simulated based on fracture scenario and the safety of wheel is evaluated.

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.