• 제목/요약/키워드: Wheel shaft

검색결과 125건 처리시간 0.027초

삼륜 전기 자동차용 외전형 In-Wheel BLDCM의 개발 (Development of Outer-Rotor Type In-Wheel BLDCM for Three-Wheeled Electric Vehicle)

  • 정광일;안진우
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.567-573
    • /
    • 2012
  • Outer rotor type in-wheel Blushless DC Motor(BLDCM) for three-wheeled electric vehicle is researched. In-wheel system is to drive the electric vehicle without mechanical transmission, shaft, differential gears or other mechanical system. The motor is designed considering the performance requirements and drive modes of the vehicle. The determined dimensions as well as the slot and rotor pole are simulated by magnetic and thermal finite element analysis and ansys workbench to analyze the performance and heating of the motor. In order to verify the performance characteristics of the proposed motor, the experiment tests are executed and satisfy well the requirements.

복지형 NEV용 외전형 In-Wheel SRM 설계 (Design of Outer Rotor Type In-Wheel SRM for Welfare Neighborhood Electric Vehicle)

  • 정광일;이동희;안진우
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.309-314
    • /
    • 2011
  • Outer rotor type in-wheel switched reluctance motor for Welfare neighborhood electric vehicle is researched. In-wheel system is to drive the electric vehicle without mechanical transmission, shaft, differential gears or other mechanical system. To calculate drive power for each wheels, the elder's and disable's safety driving conditions are considered. The designed outer rotor SRM has a 6-stator and 8-rotor pole. The determined dimensions as well as the stator and rotor pole arc are simulated and tested with CAD and finite element analysis to verify the performance of the proposed motor.

비틀림짙동 저감을 위한 추진축 설계에 관한 연구 (A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration)

  • 최은오;안병민;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

Transfer case의 구동변환을 위한 유성기어장치 구동부 설계 (Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case)

  • 염광욱
    • 한국가스학회지
    • /
    • 제26권2호
    • /
    • pp.21-26
    • /
    • 2022
  • 사륜구동은 구동력을 4바퀴에 모두 전달하기 때문에 노면과의 접지력이 상승하여 구동력이 상승한다. 하지만 그로 인해 연비가 저하되는 단점을 가지고 있다. 따라서 평소에 이륜구동으로 주행하다가 필요에 의해 선택적 사륜구동으로 변환하는 방법으로 사륜구동을 많이 사용한다. 이러한 선택적 사륜구동은 운전자가 보내는 전기적 신호를 Transfer case에서 기계적으로 바꿔서 구동력을 변환시킨다. 본 연구에서는 전기적 신호를 기계적으로 바꿔주기 위해 모터에 감속기를 적용하여 토크를 증대시켜 기능을 수행하였다. 따라서, 본 연구에서는 구동을 변환시켜주기 위해 적용되는 Transfer case내부에 있는 모터에 적용할 수 있는 감속메커니즘을 도출하고 그에 따른 유성기어형태를 적용한 감속비를 최적화하였다. 그리고 도출된 감속비를 토대로 링기어를 공통으로 사용하는 유성기어 2세트를 적용하여 입력축과 출력축이 동일상에서 감속이 진행되는 유성기어 기어치형의 개발 및 Transfer csae 내에 있는 구동변환장치 구동부의 최적화 설계를 진행하였다.

복합재료 동력전달축의 접착조인트 설계 (Design of Adhesive Joints for Composite Propeller Shafts)

  • 김진국;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가 (Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove)

  • 신재명;한승호;한동섭
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

차량 동력 전달계의 비틀림 가진원에 관한 실험적 연구 (An Experimental Study on the Torsional Excitation Source of the Vehicle Driveline)

  • 장일도;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.865-870
    • /
    • 2005
  • Torque fluctuation of the engine and angular velocity variation of propeller shaft is the main excitation source for torsional vibration in the vehicle driveline. Experimental model for engine system is constructed with 4 cylinder 4 cycle diesel engine including Motor-Propeller Shaft-Axle-Wheel system. The angular velocity is measured by magnetic pickup and FV converter at the engine flywheel and propeller shaft. This paper presents the theoretical mechanism of these excitation sources and it is identified by the experimental methods.

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (A study on torsional strength of induction hardened axle shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

최적 연속 전해드레싱을 적용한 SUS304의 연삭에 관한 연구 (A Study on the the Grindig of SUS304 with Optimum In-Process Electrolytic Dressing)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.25-30
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of astainless steel used in shaft, screw parts and clear value have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective percision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrabive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel(SUS304).

  • PDF