• Title/Summary/Keyword: Wheel position

Search Result 249, Processing Time 0.027 seconds

신경회로망을 이용한 이동로보트의 위치 추정에 관한 연구

  • 김재희;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • For navigation of a mobile robot, it is one of the essential tasks of find out its current position. Dead reckoning is the most frequently used method to estimate its position. However conventional dead reckoner is prone to give us false information on the robot position especially when the wheels are slipping. This paper proposes an improved dead reckoning scheme using neural networks. The network detects the instance of wheel slipping and estimates the linear velocity of the wheel ; thus it calculates current position and heading angel of a mobile robot. The structure and variables of the neural network are chosen based on the analysis of slip motion robot. The structure and variables of the neural network are chosen based on the analysis of slip motion characteristics. A series of experiments are performed to investigate the performance of the improved dead reckoning system.

Wheeled Blimp: Hybrid Structured Airship with Passive Wheel Mechanism for Tele-guidance Applications

  • Kang, Sung-Chul;Nam, Mi-Hee;Kim, Bong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1941-1948
    • /
    • 2004
  • This paper presents a novel design of indoor airship having a passive wheeled mechanism and its stationary position control. This wheeled blimp can work both on the ground using wheeled vehicle part and in the air using the floating capability of the blimp part. The wheeled blimp stands on the floor keeping its balance using a caster-like passive wheel mechanism. In tele-guidance application, stationary position control is required to make the wheeled blimp naturally communicate with people in standing phase since the stationary blimp system responds sensitively to air flow even in indoor environments. To control the desired stationary position, a computed torque control method is adopted. By performing a controller design through dynamic analysis, the control characteristics of the wheeled blimp system have been found and finally the stable control system has been successfully developed. The effectiveness of the controller is verified by experiment for the real wheeled blimp system.

Position Calibration System of Automatic Transfer Crane (자동 트랜스퍼 크레인의 위치보정 시스템)

  • 박경택;박찬훈;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.515-520
    • /
    • 2002
  • Automatic Transfer Crane is needed for automation of container terminal. It requires the control capability of exact position for loading/unloading job in yard. But it has the limitation of improvement because it has the operational environmental and its structural problems. It has the positioning errors caused by the deformation of rail, yawing motion of crane, wear of wheel, sliding motion between wheel and rail and so on. This study shows the calibration method of crane position by using the primitivity sensor and calibrating plate fixed on the ground.

  • PDF

Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator (가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

Influence of Four Types of Steering Assistive Devices on Driving Performance: Comparison of Normal and Disabled People with and without Driver's License (4가지 선회보조 장치가 운전 성능에 미치는 영향: 장애 유무와 운전면허 유무에 따른 비교)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of Healthy and disabled groups (with or without driver's license) to control steering wheel by using steering assistive devices in the driving simulator. The persons with partial loss of use of all four limbs have problems in operation of the motor vehicle because of functional loss to operate steering wheel. Therefore, if steering assistive devices for grasping the steering wheel are used to control the vehicle on the road in persons with disabilities, the disabled persons can improve mobility in their community life by driving a motor vehicle safely. Ten healthy subjects (with or w/o driver's license) and ten subjects with physical disabilities (with or w/o driver's license) were involved in this study to evaluate driving performance to operate steering wheel by using four types of steering assistive devices (Single-pin, V-grip, Palm-grip, Tri-pin) in driving simulator. STISim Drive 3 software was used to test the steering performance in four scenarios: straight road at low and high speed of vehicle (40 km/h and 80 km/h), curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA in order to compare the effects of two factors (type of steering assistive device and subject group) in the three dependent variables of driving performance (the lateral position of vehicle, standard deviation of lateral position representing the variation of the left and right movement of the vehicle and the number of line crossing). The mean values of the three dependent variables (lateral position, standard deviation of lateral position, the number of line crossing) of steering performance were statistically significantly smaller for the healthy or disabled groups with driver's license than the other groups without driver's license on the curved road at high speed of vehicle compared to low speed of vehicle.

Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law (뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현)

  • Chung, Yong-Oug;Chung, Ku-Seob
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

Development of Roller Wheel Mobile Robot (롤러형 바퀴를 갖는 이동로봇 개발)

  • Kim, Soon-Cheol;Yi, Soo-Yeong;Choi, Jae-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.250-257
    • /
    • 2014
  • In this paper, a new mobile robot, so called a rollerbot, is presented, which has single body and rugby-ball shaped roller wheel. A rollerbot has single point contact on ground and low energy consumption in motion because of the reduced friction. By changing center of mass using a balancing weight, a rollerbot is able to get steering force. The vertical position of mass center of the rollerbot in this paper is designed to lie inside radius of the roller wheel, so that to have stable equilibrium position. Thus, the posture and the steering control of the rollerbot can be easily done by changing the center of mass. Kinematics of the rollerbot is derived by transformation of differential motion in this paper.

A control system for wheel-driven mobile robot (휠구동방식의 이동로봇을 위한 제어시스템 설계)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Real-time mobile robot controllers usually have been designed with an emphasis on control theory ignoring the importance of system integration. This paper demonstrates that useful mobile robots require a real time controller with a wide range of capabilities in addition to control theory. These capabilities include: path-planning, position estimation, path tracking control and wheel control. An architectural framework supporting these capabilities has been designed and implemented. Using this frame work, individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system for the LCAR robot which was developed as a proto-type mobile robot in our laboratory. The context of the research, the architecture, its implementation and performance results from experiments are discussed.

  • PDF

Motion control of a wheel-chair robot using CDM (계수도법을 이용한 휠체어 로봇의 자세제어)

  • Park, Sung-Jin;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2046-2048
    • /
    • 2002
  • In this paper, I designed the inverter pendulum controller to controll the position of a wheel-chair. I used coefficient diagram method (CDM) to design the controller. The CDM is available, because it can make an engineer know all about the characteristic, stability, response time and robustness, of closed loop system. Writing this paper, I simulated the controller to know wheather is can controll the position of wheel-chair using the theorem of inverter pandulum controll, and I identified the usefulness of it.

  • PDF

Tribological Approach on the Stress Distribution of Wheel-Rail Contact (차륜과 레일 사이의 접촉응력에 관한 트라이볼로지적 해석)

  • 황재용;김기환;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.210-217
    • /
    • 1997
  • This paper presents the numerical results of the stress analysis of wheel-rail contact problems. Two models which have straight and tapered(1:20) contact geometries between the wheelset and rail are analyzed using the finite element approach. From the simulation results we found that the tapered geometry of wheel-rail contact base line showed very stable contact stress distributions for a whole contact position between the wheel and rail in a curved rail section. The FEM computed results may present an optimized geometry of wheel-rail contact in a high-speed railway system.

  • PDF