• Title/Summary/Keyword: Wheel position

Search Result 249, Processing Time 0.025 seconds

Braking Performance Analysis and Inspection of High Speed Train (고속철도 차량의 제동성능해석 및 검증)

  • Lee, Sung-Ho;Kim, Young-Kuk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.982-987
    • /
    • 2006
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine property the various brakes. Generally high speed train has adopted a combined electrical and mechanical (friction) braking system. Electrical brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, we introduce braking performance analysis and inspection though simulation and research to reduce braking distance.

  • PDF

Development of Mobile Robot for CAS inspection of Oil Tanker (유조선의 상태평가계획 검사를 위한 이동로봇의 개발)

  • Lee, Seung-Heui;Son, Chang-Woo;Eum, Yong-Jae;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • It is dangerous that an inspector overhauls defects and condition of the inner parts of an oil tanker because of many harmful gases, complex structures, and etc. However, these inspections are necessary to many oil tankers over old years. In this study, we proposed the design of mobile robot for inspection of CAS in oil tanker. The developed CAS inspection mobile robot has four modules, a measurement module of oil tanker's thickness, a corrosion inspection module, a climbing module of the surface on a wall, and a monitoring module. In order to get over at a check position, the driving control algorithm was developed. Magnetic wheels are used to move on the surface of a wall. This study constructed a communication network and the monitoring program to operate the developed mobile robot from remote sites. In order to evaluate the inspection ability, the experiments about performance of CAS inspection using the developed mobile robot have been carried out.

  • PDF

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF

Mechanism Design of the Interactive Emotional Robot (대화형 감성 로봇의 메커니즘 설계)

  • 김연훈;윤석준;이동연;곽윤근
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • The mechanism design of the interactive emotional robot has been carried out. The two-wheeled inverted pendulum type mechanism was adopted to improve the mobility and make the innate clumsy monoaxial bicycle motion. Even though the system is unstable in itself, it is expected for the robot to move freely in a plane, keeping the upright position only with two wheels. Two motors attached on head can make 4 motion sets, and two motors on the wheels can make 8. Therefore, 32 independent motion sets can be achieved from the robot to communicate the emotions with humans. The motion's equation of the robot was derived based on nonholonomic dynamics, and the necessary power to the wheel's rotational axis was found by simulation.

  • PDF

A Method of Fault Diagnosis for Engine Synchronization Using Analytical Redundancy (해석적 중복을 이용한 내연 기관 엔진의 동기화 처리 이상 진단)

  • 김용민;서진호;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • We consider a problem of application of analytical redundancy to engine synchronization process of spark ignition engines, which is critical to timing for every ECU process including ignition and injection. The engine synchronization process we consider here is performed using the pulse signal obtained by the revolution of crankshaft trigger wheel (CTW) coupled to crank shaft. We propose a discrete-time linear model for the signal, for which we construct FDI (Fault Detection & Isolation) system consisting residual generator and threshold based on linear observer.

Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals (제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정)

  • Jo, Kyoung-Hwan;Jang, Choul-Soo;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.

Modular Type Robot for Field Moving and Tree Climbing (야지 구동과 나무 등반을 위한 모듈형 로봇의 개발)

  • Lee, Min-Gu;Yoo, Sang-Jun;Park, Jong-Won;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.118-125
    • /
    • 2012
  • Based on recent advances in technology, many robots are developed and they are used in a hazardous environment such as military operation, fire, and building collapse and so on. Among them, reconnaissance robot should be able to perform various missions which people can not do. So it needs the capability of moving with hiding its position on rough terrain, overcoming obstacles, and guaranteeing its efficiency of reconnaissance. For this reason there are in progress of researching biomimetic robots. Therefore in this paper we proposed robot mechanism, two modules based on the screw and wheel mechanism which mimic snake, and the spiral climbing method was considered for overcoming the situation when moving on the trees.

Behavior Control Algorithm for Space Search Based on Swarm Robots (군집 로봇 기반 공간 탐색을 위한 행동 제어 알고리즘)

  • Tak, Myung-Hwan;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2152-2156
    • /
    • 2011
  • In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.

A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion (Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구)

  • Kim, Byeong-Woo;Her, Jin;Cho, Hyun-Duck;Lee, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.