• Title/Summary/Keyword: Wheel life

Search Result 200, Processing Time 0.031 seconds

Study on the fatigue crack initiation life in rail wheel contact (철도차량용 휠과 레일의 피로균열시작 수명에 관한 연구)

  • 김태완;설광조;조용주
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.733-738
    • /
    • 2002
  • In this study, contact fatigue in wheel-rail contact is simulated. It is necessary to calculate contact stress and subsurface stresses accurately to predict fatigue behavior. Contact stresses are obtained by contact analysis of semi-infinite solid based on influence function and subsurface stress field obtained by using rectangular patch solutions. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when friction coefficient exceeds a specific value for all of three fatigue criteria.

  • PDF

Fatigue Analysis of Locking Parts in the Gauge - Adjustable Wheel Set System in the Curved Track (곡선부 주행시 궤간 가변 잠금부품들의 피로해석)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Kim, Jung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1-6
    • /
    • 2006
  • The gauge - adjustable wheelset system in the transcontinental railway represents a more effective way in comparison with other techniques for overcoming difference in track gauges. Moreover, freight trains having the gauge - adjustable wheelsets will be run various curved tracks of Eurasian railroad network such as TKT, TCR and TSR. Therefore, to assure the safety of the gauge - adjustable adjustment wheelset system, it is necessary to evaluate durability of locking parts in the system during freight trains' service in the curved track. In this study, it was performed to estimate fatigue life of locking parts under lateral wheel pressure by using durability simulator.

  • PDF

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

A Study on Life Cycle Extension of T-50 Aircraft Hydraulic Control Valve (T-50 항공기 유압조절 밸브 수명연장 방안)

  • Nam, Yongseo;Kim, Taehwa;Baek, Seungji;Kim, Seunghyu;Song, Seokbon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.16-20
    • /
    • 2010
  • In General, the hydraulic system of T-50 Advanced Trainer is applied to flight control system, wheel & Brake system and fuel system for aircraft operation. The hydraulic system is operation with pressure of 3000psi. and many mechanical parts which is operated by hydraulic system has been stressed in incomplete environment same as heat and friction. for example, Oil leakage had occurred in the shutoff valve of FFP used in a certain period of time. After study, The crack progressed by fatigue due to the irregular hydraulic pressure and vibration has been identified as the reason of oil leakage. This paper presents life cycle extension plans of FFP shutoff valve by configuration improvements of shutoff valve and FFP hydraulic motor.

  • PDF

Traumatic descending aortic aneurysm -Report of one case- (외상성 하행대동맥류 수술치험 1례)

  • 이신영
    • Journal of Chest Surgery
    • /
    • v.24 no.5
    • /
    • pp.505-509
    • /
    • 1991
  • Rupture or laceration of the aorta is a more common result of nonpenetrating traumatic injury than is generally appreciated. If the lesion is promptly diagnosed, a appropriate surgical treatment may be life-saving. Diagnosis may be difficult and at times the rupture may remain clinically silent for variable period.< A 34 - year old male patient had sustained steering wheel injury to his chest during automobile accident 8 weeks prior to admission. The diagnosis of traumatic aneurysm of the aorta was delayed as he was asymptomatic. Surgical repair of false aneurysm of the descending aorta was successfully performed by partial cardiopulmonary bypass through the femoral artery and vein.

  • PDF

Fundamental wheel Control for Artificial Life-robot

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.1-36
    • /
    • 2001
  • Recently the robot industry has developed quickly. There are robots carrying luggage at factories, the amusement robots (such as the pet-type robot) in the house, and so on. As the ability of computers improve, robot ability also improves, because mary calculations can be done in little time. Consequently robots can perform complex motions by various control methods. The robot in our laboratory was developed in order to assist various works in a hospital. We controlled our robot using PID control method. So this paper is written about PID control.

  • PDF

Evidence Based Approach of Wheel Balance Cancer Therapy: A Review (수레바퀴 암 치료법에 대한 근거중심적 연구)

  • Zheng, Hongmei;Yoon, Jeungwon;Yoo, Hwa-Seung;Cho, Chong-Kwan
    • Journal of Korean Traditional Oncology
    • /
    • v.17 no.2
    • /
    • pp.1-16
    • /
    • 2012
  • Background : Integrative cancer treatment is a holistic approach embracing body, mind, and spirit incorporating conventional treatments of surgery, chemotherapy, radiation and personalized complementary treatments. Wheel Balance Therapy (WBT) of East-West Cancer Center(EWCC), Dunsan Oriental Hospital of Daejeon University was developed to balance out all factors involved in cancer care based on the traditional theories of oriental medicine. Objective : This work aims to analytically review literatures on WBT and its related components. Methods : Literatures published from January 1st, 1990 to April 30th, 2011 were reviewed focusing on 4 main components of WBT; herbal medicine, immune activation, anti-cancer diet, and breathing/meditation. Data were retrieved from medical search engines and electronic data bases including Pubmed, Research Information sharing Service (RISS), Korean-studies Information Service System (KISS), China National Knowledge Infrastructure (CNKI), and Korea's National Digital Library (KNDL). Results : In this review, EWCC's most commonly prescribed formulas are explored. The composition of the formulas, their use in clinical settings as well as the background studies and other therapeutic efficacies are explained. Information on incorporating anti-cancer dietary support and breathing and meditation techniques, other therapies practiced as part of the center's integrative cancer care are also covered. Conclusion : WBT based on holistic theories of oriental medicine embracing body, mind, and spirit is expected to further contribute in promotion of cancer patients' quality of life and prolonged survival time.

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

Development of Ultrasonic Grinding Wheel for Hybrid Grinding System (하이브리드 연삭시스템 초음파 공구 개발)

  • Kim, Kyeong Tae;Hong, Yun Hyuck;Park, Kyung Hee;Lee, Seok Woo;Choi, Hon Zong;Choi, Young Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1121-1128
    • /
    • 2013
  • Ultrasonic grinding system is that the ultrasonic vibration by ultrasonic actuator is applied on conventional grinding system during grinding process. The Ultrasonic vibration with a frequency of over 20kHz can reduce grinding forces and increase surface quality, material removal rate (MRR) and grinding wheel life. In addition, ultrasonic vibration assisted grinding can be used for the materials that are difficult to cut. In this paper, methodology for ultrasonic tools is studied based on finite element method, and in turn the ultrasonic tools are designed and fabricated. It is found that the ultrasonic tool can vibrate with a frequency of 20kHz and amplitude of $25{\mu}m$. In order to verify the machining performance, the grinding experiment is performed on titanium alloy. By applying ultrasonic vibration, the grinding force and temperature are reduced and MRR is increased compared with the conventional grinding.

Bio-mechanical Analysis on the Lower Back using Human Model during Pushing the Manual Vehicles (인체모델을 이용한 농작업자의 밀기 작업시 요추부 생체 역학적 평가)

  • Lim, Dae-Seob;Lee, Kyoung-Suk;Choi, Ahn-Ryul;Kim, Young-Jin;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • A high prevalence of protected horticulture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of product transporting. The purpose of this study is to evaluate quantitatively the spinal load of operator using manual vehicles to predict and prevent musculo-skeletal risks. Spinal load in operators using 4 kinds of manual vehicle were analyzed. Before evaluating spinal load on operator using the manual vehicles by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While Operators pushed the manual vehicles(wheelbarrow, Trolley, 2 wheel cart, and 4 wheel cart) contained loads that were 0 N and 800 N, their spinal loads(compression force, shear force) were evaluated. The compression force demonstrated under the NIOSH action limits - 3410N - for all 4 manual vehicle's operators(McGill 1997; Marras 2000). However, the lateral shear force demonstrated over the University of Waterloo - 500N - for all 3 manual vehicle's operators except 4Wheel cart (Yingline and McGill, 1999). Therefore, operators have risks in prevalence of the musculo-skeletal disorders due to shear force. The findings of this study suggest that it need to be determine the spinal load, especially lateral shear force in designing the manual vehicles in the future.