• Title/Summary/Keyword: Wheel Velocity

Search Result 282, Processing Time 0.028 seconds

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

Algorithm for Performance Analysis of Vane-Wheel using Panel Method (패널법을 이용한 Vane-Wheel 성능해석 알고리즘)

  • Seok, Woo-Chan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • In this paper, we establish an analysis algorithm and a design procedure for a Vane-Wheel which is a freely rotating device behind a propeller, by using a panel method. Vane-Wheel's function is to extract energy from the propeller slipstream in turbine part which is inner part of the Vane-Wheel, and convert this energy into an additional propulsive thrust in propeller part which is outer part of the Vane-Wheel. Two parts must satisfy torque balance and thrust has to act to the ship's forward direction. A Vane-Wheel has large interaction effect with propeller since it is placed behind of the propeller. Therefore, in order to consider interaction effect correctly, incoming velocity to the Vane-Wheel in a circumferential mean wake was calculated considering induced velocity from propeller to the Vane-Wheel. Likewise, incoming velocity to the propeller was calculated considering induced velocity from the Vane-Wheel to the propeller. This process is repeated until a converged result is obtained.

Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer (바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구)

  • Park, Deok-Bae;Hur, Jin-Huek;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF

Position, Orientation, and Velocity Feedback Control Algorithms for Differential-Drive Bobile Robot (차동 구동형 이동 로보트의 위치, 방향 및 속도 궤환 제어 알고리즘)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.63-72
    • /
    • 1997
  • The design and implementation of a drive wheel position, orientation, and velocity feedback control algorithm for a differential-drive mobile robot is described here. A new concept, the most significant error, is introduced as the control design objective. Drive wheel position, orientation, and velocity feedback control directly minimize the most siginificant error by coordinating the motion of the two drive wheels. The drive wheel position, orientation, and velocity feedback control algorithm is analyzed and experiments are conducted to evaluate its performance. The experimental results are shown that drive wheel position, orientation and velocity feedback control algorithm yields substantially smaller position and orientation errors than those of conventional methods.

  • PDF

Estimation of the Absolute Vehicle Speed using the Fifth Wheel (제 5바퀴속도와 비교한 차량절대속도 추정 알고리즘)

  • 황진권;송철기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2003
  • Vehicle acceleration data from an accelerometer and wheel speed data from standard, 50-tooth antilock braking system wheel speed sensors are used to estimate the absolute longitudinal speed of a vehicle. We develop the four velocity estimation algorithms. And we compare experimental results with the Butterworth filtered speed from the fifth wheel and find that it is possible to estimate absolute longitudinal vehicle speed during a hard braking maneuver lasting three seconds.

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.

A study on the Optimum Wheel Characteristics Using Grinding Machine (연삭 장비를 이용한 최적의 휠 특성분석)

  • Ko, Jun-Bin;Kim, Woo-Kang;Jeon, Tek-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.142-148
    • /
    • 2008
  • This study aims to find the optimal cutting conditions, which are obtained by grinding condition, and the grinding characteristics and condition of constant velocity joint were investigated with respect to wheel velocity, depth of cut, feed speed. Grinding machine has been widely used in manufacturing optical reflects of metal. Such as steel are easy to be machined because of their proper material. As a result I obtained the data of grinding conditions makes good surface roughness and the optimal condition of grinding and get the mesh condition. The purpose of this study is to find the optimum grinding wheel characteristics for cutting constant velocity joint.

  • PDF

Introduce and application of the angular velocity sensing type of wheel flange lubricator for the railways in KOREA (국내 철도차량용 각속도 감지식 도유기의 적용 및 소개)

  • La, Won-Ki;Yang, Bang-Sub;Lee, Won-Sang;Chang, Dae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.958-962
    • /
    • 2010
  • Most of operating railways in domestic, it is used to be Wheel flange lubricator system applied liquid spray type. Wheel flange lubricator are reduced the abrasion of wheel flange through spraying in accordance with operating on the curve or operating function of time base and/or distance base. this paper is written to introduce and study the efficiency for the angular velocity sensing type of lubricant systems.

  • PDF

Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit (이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법)

  • Yang, Gil Jin;Choi, Byoung Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.