• Title/Summary/Keyword: Wheel Radiation Noise

Search Result 18, Processing Time 0.025 seconds

Experimental Analysis of Wheel Radiation Noise of HANVIT 200 Train in Curve Lines (곡선부에서의 한빛 200 열차 차륜방사 소음 특성)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.907-910
    • /
    • 2008
  • The wheel radiation noise characteristic of Korean tilting train(Hanvit 200) on curved rail under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $5^{th}$ and $6^{th}$ car are decided to measure radiation noise level among a train of six cars. The test subject curve radius executed from R400, R500, R600, R700 and R800 segments. The speed of test trains when from R600 and R800 curves existing operation speed and speed up 20% of existing speed. On curved rail at the time of operation speed of Hanvit 200 trains from below 95km/h wheel radiation noise level at $94dBA{\sim}99dBA$, the operation speed from between $100km/h{\sim}144km/h$ wheel radiation noise level at $100dBA{\sim}106dBA$.

  • PDF

Investigation of the Dynamic Properties of Railway Tracks using a Model for Calculation of Generation of Wheel/Rail Noise

  • Koh, Hyo-In;Nordborg, Anders
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • For optimization of a low-noise track system, rail vibration and noise radiation needs to be investigated. The main influencing parameters for the noise radiation and the quantitative results of every track system can be obtained using a calculation model of generation and radiation of railway noise. This kind of model includes contact modeling and the calculation model of the dynamic properties of the wheel and the rail. This study used a nonlinear wheel/rail interaction model in the time domain to investigate the excitation of the rolling noise. Wheel/rail response is determined by time integrating Green's function of the rail together with force impulses from the wheel/rail contact. This model and the results of the study can be used for supporting calculation with the conventional model by an addition of the contributions due to nonlinearities to the roughness spectrum.

Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM (유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측)

  • 양윤석;김관주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

Prediction of Rolling Noise of Korean Train Express Using FEM and BEM (FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측)

  • 김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

On-board investigation on whell noise radiation of metro train (지하철 곡선부 운행구간 차륜방사소음에 관한 실험적 연구)

  • Koh, Hyo-In;Cho, Jun-Ho;Hur, Hyun-Mu;Park, Joon-Hyuk;You, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.174-177
    • /
    • 2007
  • In this paper the noise characteristics of metro train is investigated experimentally. It is primarily aimed at observing the squealing noise radiation of each wheel when the vehicle pass the curve sections. This will be used to understand the noise excitation mechanism at the contact area between squealing wheels and rails which induce squeal noise at curve sections. To identify the related key parameters and boundary conditions on-board monitorings of the noise, vibration of the wheel and bogie and displacement behaviour of the wheels and rails have been done. In this paper only noise measurement and results are discussed. From spectrogramms squeal noise due to creepage and noise due to flange contact of the wheels could be identified. At the moment of the curve passing the highest squeal levels are found on the front inner wheel. However since curve noise depends on variable factors more analyses will be followed to identify the squealing wheels and the noise excitation.

  • PDF

A study on patterns of propagation for high speed train(KTX) (한국형 고속전철(KTX) 방사패턴에 관한 연구)

  • 구동회;김재철;박태원;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.836-842
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics. The spherical, cosine and dipole radiation characteristics compared and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation has dipole characteristics for low speed range(below about 150km/h) at electric multiple system. We know that push-pull high speed system(maximum speed: 300km/h) has cosine characteristics of noise propagation. For this purpose, We conduct the experiment of noise and know the empirical formula of noise level and radiation coefficient K. This model of simulation is conducted through point source array model at wheel/rail contact point by using program and experimental formula. We can guess prediction of profile, flat and wear of wheel by above modeling in near field.

  • PDF

Study on the relation between creep phenomena and radiating squeal noise about the railway (철도차량 곡선부 주행시 차륜에 작용하는 크립과 스킬소음 발생에 관한 고찰)

  • Kim, Beom-Soo;Kim, Sang-Soo;Kim, Kwan-Ju;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig. Creep characteristics and squeal noise were observed by varying relative velocity of the wheel with respect to the rail and friction coefficient. Computational radiating noise analysis was also performed based on the modal analysis and noise transfer function measurement of the object wheel.

  • PDF

Study on the Sound Radiaton Characteristics of Trains by Sound Intensity Method (음향 인텐시티법을 이용한 주행열차의 음향방사특성의 검토)

  • 주진수;김재철
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.603-608
    • /
    • 1998
  • In order to obtain basic data for the prediction of railway noise propagation, the noise radiation characteristics (source position, radiation directivity, etc) of trains were measured by using the sound intensity method. The measurements were performed at a side of railway by setting an intensity-probe array. As the measurement results, it was found that rolling noise due to interaction between wheel and rail and motor noise radiation from the lower part of train are dominant. The location of main sound sources can be described as being at the height of 0.1m in the center line of track, and the radiation directivity in the cross section of actually running trains are presented as a dipole source.

  • PDF

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.802-808
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.