• Title/Summary/Keyword: Wheel Axle

Search Result 145, Processing Time 0.028 seconds

The Force and Endurance During Wheelchair Propulsion by Three Different Rear Axle Positions (의자차 뒷바퀴 축의 위치에 따른 의자차 추진력과 지구력)

  • Lee, Mi-Young;Kim, Su-Il
    • Physical Therapy Korea
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This study was carried out to help the comprehensive rehabilitation of spinal cord injuries by measuring propulsion force and endurance exerted on wheelchair handrims, and predicting the differences among three different rear axle positions. The BTE (Baltimore Therapeutic Exerciser) work simulator was used on 9 paraplegia to test the force and endurance during wheelchair propulsion. The 141 large wheel of the BTE work simulator and a standard wheelchair with removed handrims were used for simulating wheelchair propulsion. The neurological and demographical characteristics of the patients were collected by personal interviews and direct examinations. The Kruskal-Wallis test was used to compare force and endurance among the groups. The strongest maximum isometric strength was produced when the rear axle of the wheelchair and the acromion process were on the same coronal plane. Although there were no significant differences statistically, moving the rear axle forward did result in greater isotonic strength. The research suggests that better functional activity of persons with paraplegia is possible when the rear axle of the wheelchair is appropriately adjusted.

  • PDF

Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove (완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가)

  • Shin, Jae-Myung;Han, Seung-Ho;Han, Dong-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

A Study of Grinding Characteristic of Ferrule (페룰의 연삭 가공 특성에 관한 연구)

  • Lee, S.W.;Choi, H.Z.;Choi, Y.J.;Ahn, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.974-979
    • /
    • 2003
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter is very important. The co-axle grinding process of ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ferrule is affected by kind of grinding wheels, grinding conditions, and characteristic of workpiece and equipment. In this study, surface integrity of workpiece according to change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ferrule from many experiments.

  • PDF

Load Measurement Algorithm for a Vehicle Wheel Dynamometer (자동차 휠 동력계의 하중 검출 신호 처리 방법)

  • Lee, Jinsung;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.418-424
    • /
    • 2017
  • A wheel dynamometer was installed between the rim and axle hub to measure the forces and moments applied to a vehicle. The wheel dynamometer was composed of sensing and signal processing components. Because the sensing component contained a complex structure to sense the six components of the forces and moments and the wheel rotated along with the vehicle movement, sophisticated signal processing hardware and a software algorithm were used. The strains and the calibration matrices of the wheel dynamometer along the wheel rotation angle were investigated using FEM. From the analysis, the calibration matrices were simplified using a spline interpolation. Based upon these results, the signal processing component could be effectively designed and the firmware software could be simplified.

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Development and performance evaluation of lateral control simulation-based multi-body dynamics model for autonomous agricultural tractor

  • Mo A Son;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Wan Soo Kim;Yeon Soo Kim;Dae Yun Shin;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, we developed a dynamic model and steering controller model for an autonomous tractor and evaluated their performance. The traction force was measured using a 6-component load cell, and the rotational speed of the wheels was monitored using proximity sensors installed on the axles. Torque sensors were employed to measure the axle torque. The PI (proportional integral) controller's coefficients were determined using the trial-error method. The coefficient of the P varied in the range of 0.1 - 0.5 and the I coefficient was determined in 3 increments of 0.01, 0.05, and 0.1. To validate the simulation model, we conducted RMS (root mean square) comparisons between the measured data of axle torque and the simulation results. The performance of the steering controller model was evaluated by analyzing the damping ratio calculated with the first and second overshoots. The average front and rear axle torque ranged from 3.29 - 3.44 and 6.98 - 7.41 kNm, respectively. The average rotational speed of the wheel ranged from 29.21 - 30.55 rpm at the front, and from 21.46 - 21.63 rpm at the rear. The steering controller model exhibited the most stable control performance when the coefficients of P and I were set at 0.5 and 0.01, respectively. The RMS analysis of the axle torque results indicated that the left and right wheel errors were approximately 1.52% and 2.61% (at front) and 7.45% and 7.28% (at rear), respectively.

Safety evaluation of tilting train on circular curve (틸팅열차의 원곡선부 주행시 안전성 평가)

  • Kim, Sang-Soo;Eum, Ki-Young;Bae, Jae-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1703-1712
    • /
    • 2010
  • The safety of tilting train running on curved track is, in general, evaluated with a derailment coefficient calculated by the ratio of wheel load and lateral force, Particularly on curve, the wheel load and lateral force on rail may cause trackbed to be deformed, depending on their intensity, and moreover, often result in critical accident such as derailment. This study hence was intended to identify the cause of wheel load and lateral force so as to suggest the allowable wheel load reduction rate, lateral force limit and derailment coefficient, thereby quantitatively evaluating the operational safety of tilting train. This study therefore was aimed to analyze the wheel load and lateral force occurred during tilting train's operation on circular curve in such a way of comparing with traditional trains, by axle and speed, in a bid to eventually evaluate the operational safety of tilting train.

  • PDF

Stress Analysis in the Elastic-Plastic Analysis of Railway Wheels

  • Ashofteh, Roya Sadat;Mohammadnia, Ali
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Fatigue and wear in wheels is often due to the forces and loading. These certainly have fundamental effects on reducing the wheel life and increasing the costs related to repairing and maintenance. Modeling and stress analysis of a wheel sample existing in the Iranian fleet have been performed in its contact with U33 and UIC60 rails. The results have been reviewed and analyzed in elastic and elastic-plastic phase and under static (railcar weight) and quasi static loads. Moreover, effects of wheel diameter, axle load, wheel material, rail type are analyzed.

Dynamic Analysis of Railway Vehicle with Wheel Unbalance (차륜 불평형이 있는 철도차량의 동적해석)

  • Lee, Seung Il;Choi, Yeon-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1387-1395
    • /
    • 2013
  • When the center of mass of a railway wheel is not aligned with the geometrical center of the wheel axis, wheel unbalance occurs. If a railway vehicle runs without removing the wheel unbalance, vibrations will be produced. This will also cause wear and damage of the axle bearing. In this study, dynamic analysis of a railway vehicle with wheel unbalance was conducted to examine the reduction in critical speed and the resonance of the car-body and the effect on the magnitude of wheel unbalance was examined. In addition, the calculation of the car-body vibration owing to static and dynamic unbalance in the railway wheel shows that two-plane balancing is necessary.

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch (접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.