• 제목/요약/키워드: Wheat protein isolate

검색결과 15건 처리시간 0.018초

남극 크릴(Euphausia superba) 연육의 물성에 대한 첨가제의 영향 (Effects of Additives on the Physical Properties of Antarctic Krill Euphausia superba Surimi)

  • 채연주;최은혜;이양봉;전병수;김선봉
    • 한국수산과학회지
    • /
    • 제47권4호
    • /
    • pp.347-355
    • /
    • 2014
  • This study examined the effects of additives on the physical properties of surimi made from Antarctic krill Euphausia superba. Krill surimi was prepared from krill meat with an added cryoprotectant (sugar 6%, polyphosphate 0.2%). Krill surimi without additives does not form a gel. In order to enhance the gelling of krill surimi, additives such as soy protein isolate (SPI), guar gum, carrageenan, and wheat starch were examined. Of these, SPI had the highest gel-forming activity, while guar gum, carrageenan, and wheat starch had decreasing gel-forming activity and negative effects on other physical properties as their concentrations were increased. In addition, SPI enhanced the gel strength and physical properties of krill surimi. The fluoride and astaxanthin contents of krill surimi with added SPI were 55.0 mg/kg and 0.8 mg/kg, respectively.

The Concept of Standardized Ileal Amino Acid Digestibilities: Principles and Application in Feed Ingredients for Piglets

  • Urbaityte, R.;Mosenthin, R.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권8호
    • /
    • pp.1209-1223
    • /
    • 2009
  • In this review, the terminology that is used to describe ileal amino acid (AA) digestibilities in piglet feed ingredients is defined. If one accepts that the determination of AA digestibilities should be based on the ileal analysis method, one should consider that ileal digesta contains variable amounts of endogenous crude protein (CP), which originates mainly from digestive secretions, sloughedoff epithelial cells and mucins. The ileal endogenous CP and AA losses are separated into basal ileal endogenous CP and AA losses ($IAAL_{B}$), which are not influenced by the feed ingredient composition, and specific ileal endogenous CP and AA losses ($IAAL_{S}$), which are induced by feed ingredient characteristics such as level and type of fiber and anti-nutritional factors (ANF). Depending how ileal endogenous CP and AA losses are considered in the measurement of CP and AA digestibilities, digestibility values are expressed as apparent (AID), standardized (SID), or true (TID) ileal digestibilities of CP and AA. The main concern associated with the use of AID values in diet formulation for pigs is that they are not additive in mixtures of feed ingredients. Consequently, the concept of standardized ileal CP and AA digestibilities was introduced by correcting AID values for basal ileal endogenous CP and AA losses ($IAAL_{B}$). The correction for both $IAAL_{B}$ and $IAAL_{S}$ yields TID values, however, routine procedures to measure $IAAL_{S}$ are not yet available. In principle, SID values should be preferred, because they represent the fundamental properties of the feed ingredient. There exist only few reports on SID of CP and AA in feedstuffs frequently used in piglet nutrition. These include soybeans (SB), soybean meal (SBM), soy proteins (SP), soy protein concentrate (SPC), soy protein isolate (SPI), corn gluten (CG), wheat gluten (WG), pea protein (PeaP), potato protein (PotP), fish meal (FM) and whey proteins (WP), but the results obtained are inconsistent. Differences in SID values within feed ingredients may, at least in part, be attributed to different processing conditions or inherent differences of the assay feed ingredients. Moreover, there is some evidence that the determination of SID values and $IAAL_{B}$ in piglets may be confounded by the dietary CP level of the assay diet, age and (or) body weight (BW), the level of feed intake or the methodological approach used to determine $IAAL_{B}$.

저급 수리미의 젤 강도 증강을 위한 첨가물의 최적화 (Optimization of Ingredients Formulation in tow Grades Surimi for Improvement of Gel Strength)

  • 최영준;이호수;조영제
    • 한국수산과학회지
    • /
    • 제32권5호
    • /
    • pp.556-562
    • /
    • 1999
  • 전분은 종류에 관계없이 첨가량을 증가시킴에 따라 gel 강도는 저하하였으며, RA급 냉동 surimi은 전분의 종류에 큰 영향을 받지 않은 반면, A급은 감자전분 및 수식 옥수수전분이 농도 증가에 따른 gel 강도 감소에 가장 적은 영향을 미치는 것으로 나타났다. WPC, DEW 및 SPI는 첨가량이 증가함에 따라 gel 강도는 감소하였으나, BPP는 gel 강도를 증가시키는 것으로 나타났으며, 이 같은 효과는 RA급에서 현저하였다. BPP의 gel 강도 증가 효과는 낮은 변성온도와 열 변성에 따른 구조 변화가 어육 gel의 matrix 강화에 영향을 미치는 것으로 판단된다. RA급을 이용한 어육 gel 제조시 백색도에 큰 영향을 미치지 않는 $2\%$ 범위 내에서 gel 강도 강화를 위해 사용할 수 있는 것으로 나타났다. Gel 강도 1000$\times$g를 제한 인자로 하였을 때, 냉동 surimi의 소모량이 가장 적은 formulation은 A급에서는 A급 surimi $37.8\%$ DEW $6.6\%$, 전분 $3.4\%$ 였으며, RA급에서는 RA급 surimi $40.9\%$, DEW $9.1\%$, 전분 $0.9\%$이었다.

  • PDF

유청단백질로 만들어진 식품포장재에 관한 연구

  • 김성주
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul;Liu, Qin;Choi, Jae-Young;Wang, Yong;Shim, Hee-Jin;Xu, Hong Guang;Choi, Gyung-Ja;Kim, Jin-Cheol;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1223-1229
    • /
    • 2009
  • To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.