• Title/Summary/Keyword: Wheat Fiber

Search Result 205, Processing Time 0.035 seconds

Fried pork loin batter quality with the addition of various dietary fibers

  • Park, Sin-Young;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.137-148
    • /
    • 2021
  • The effect of the addition of dietary fiber extracted from wheat, bamboo, and oat on the quality of fried pork loin batter was investigated. Quality evaluation included proximate composition, pH, color, viscosity, coating and frying yield, electronic nose, and sensory evaluation. Regarding proximate composition of fried batter and fried pork loin, the water content of the dietary fiber treatments was significantly higher than that of the control (p < 0.05), whereas fat content was significantly lower than that of the control (p < 0.05). The lightness of non-fried batter with dietary fiber treatments was significantly higher than that of the control (p < 0.05), whereas the yellowness was significantly lower than that of the control (p < 0.05). The lightness, redness, and yellowness of fried pork loin with dietary fiber treatment were significantly lower than those of the control (p < 0.05). The viscosity and coating and frying yield of dietary fiber treatments were significantly higher than those of the control (p < 0.05). The volatile compounds of dietary fiber treatments were decreased "tallowy" flavor and increased "buttery" and "milky" flavor. The principal components of bamboo and oat fiber treatments were clearly distinguishable from those of the control; however, similar principal components as those of the control were obtained with wheat fiber treatment. Regarding sensory evaluation, the color, texture, and overall acceptability of wheat and oat fiber treatments were significantly higher than those of the control (p < 0.05), and the flavor of the wheat fiber treatment was significantly higher than that of the control (p < 0.05). These results show that wheat and oat fibers are suitable for fried pork loin batter and improve its quality.

ISP, CSP의 대체제로서 Wheat Fiber 첨가한 유화형 소시지의 저장성에 미치는 영향

  • Choe, Yun-Sang;Lee, Mi-Ae;Jeong, Jong-Yeon;Choe, Ji-Hun;Han, Du-Jeong;Kim, Hak-Yeon;Lee, Eui-Su;Kim, Cheon-Je
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2006.05a
    • /
    • pp.83-85
    • /
    • 2006
  • 본 실험은 ISP, CSP의 대체제로서의 wheat fiber 첨가가 유화형 소시지의 저장성에 미치는 영향을 조사하였다. pH를 비교한 결과는 저장 4주차에서만 wheat fiber 첨가한 처리구가 유의적으로 낮았으며, 가열수율은 control과 비교하여 모든 처리구가 유의적으로 높게 나타났다. 저장감량은 저장 초기에는 wheat fiber를 첨가한 처리구가 유의적으로 낮은 감량을 보였으나, 저장 4주째에서는 유의적인 차이를 보이지 않았다. 물성은 hardness, gumminess, chewiness의 경우 모든 처리구에서 높게 나타났으며, 대체적으로 저장기간이 증가함에 따라서 증가하는 것으로 나타났다. TBA수치와 VBN수치는 저장기간이 경과함에 따라서 수치가 증가하는 것으로 나타났으며, 관능검사 결과도 모든 항목에서 유의차가 나타나지 않았다. 이상의 결과 ISP, CSP의 대체제로 wheat fiber를 첨가한다면 유화형 소시지의 저장성에 영향을 주지 않으며, 경제적인 측면에서 제품의 단가를 절감할 수 있을 것으로 생각된다.

  • PDF

Wheat Bran and Breast Cancer : Plausibility of the Estrogen Hypothesis

  • Cho, Susan-Sungsoo;Sharon Rickard;Chung, Chin-Eun
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.160-166
    • /
    • 2003
  • To examine the evidence that wheat bran is protective against breast cancer development and that its main mechanism of action is by modulating estrogen metabolism. This review explores the role of different experimental factors on the anticancer effects of wheat bran and the relationship of changes to estrogen metabolism by wheat bran on breast cancer risk The timing of the experimental diets in relation to carcinogen administration, the length of feeding of the experimental diets, and the level of dietary fat had an impact on the effectiveness of different doses of wheat bran in reducing breast carcinogenesis. Wheat bran supplementation resulted in significant reductions in human plasma estrogen levels but not in that of animals tested. The change in excretory metabolism of estrogen by wheat bran feeding in animals was not related to any of the tumor indices measured. The protective effect of wheat bran in breast carcinogenesis is greatest at the promotional phase and when supplemented in a high fat diet. Doses of wheat bran in the 9-12% range in diet have been consistently protective. The inconsistency observed with higher doses of wheat bran may be dependent on the animal model used. Although wheat bran's inhibitory effects on tumor growth may involve changes to estrogen metabolism, the fiber and phytochemical components of wheat bran may also act through estrogen-independent mechanisms. For a better understanding of the effect of wheat bran on breast carcinogenesis, studies comparing the effects of different wheat bran components both alone and in combination need to be performed.

Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

  • Choi, Induck;Kang, Chon-Sik;Lee, Choon-Kee;Kim, Sun-Lim
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2016
  • Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.

Effect of Dietary Structural to Nonstructural Carbohydrate Ratio on Rumen Degradability and Digestibility of Fiber Fractions of Wheat Straw in Sheep

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1591-1598
    • /
    • 2002
  • The effect of different dietary structural carbohydrate (SC) to nonstructural carbohydrate (NSC) ratios on fiber degradation, digestion, flow, apparent digestibility and rumen fluid characteristics was studied with a design using 18 wethers fitted with permanent rumen and duodenum cannulae. All sheep were divided into six groups randomly, receiving six diets with varying SC to NSC ratios. All diets contained the same proportion of wheat straw and concentrate. The dietary SC to NSC ratios were adjusted by adding cornstarch to the concentrate supplements. The duodenal and fecal flows of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC) and cellulose (CEL) were estimated using chromium-mordanted wheat straw as a flow marker. The degradation parameters of wheat straw DM, NDF, ADF, HC and CEL were determined by incubating the ground wheat straw in nylon bags in the rumen for different periods of time. There was no effect (p>0.05) of the different dietary SC to NSC ratios on rumen pH or $NH_3$-N, but acetate, propionate and butyrate concentrations were significantly affected (p<0.05 or p<0.01) by dietary SC to NSC ratios in the rumen fluid. When the dietary SC to NSC ratio was 2.86, the highest rumen degradability of wheat straw DM, NDF, ADF and CEL was found, but the highest apparent rumen digestibilities of DM, NDF, ADF, HC and CEL occurred at a 2.64 SC to NSC ratio. However, because of compensatory digestion in the hindgut, the apparent digestibilities of DM, NDF, ADF, HC and CEL were highest when the dietary SC to NSC ratio was 2.40. In conclusion, there is a optimal range of dietary SC to NSC ratios (between 2.86 and 2.40) that is beneficial to maximize wheat straw fiber degradation and apparent digestibility.

Effects of Dietary Fiber on Water Balance, Blood Acid-Base Balance, Body Temperature, and Metabolic Rate of Adult Roosters under Heat Stress (사료 섬유질이 고온 스트레스를 받는 수탉 성계의 수분 출납, 혈액의 산-염기 평형, 체온 및 대사율에 미치는 영향)

  • 이지훈;이봉덕;이수기;유동조;현화진
    • Korean Journal of Poultry Science
    • /
    • v.22 no.3
    • /
    • pp.133-144
    • /
    • 1995
  • One metabolism trial(Experiment I) and another respiration trial(Experiment II) were conducted to investigate the effects of dietary fiber supplementation(20% wheat bran) on the water balance, blood acid-base balance, body temperature, and metabolic rate of heat-stressed adult roosters. In Experiment I, twenty 20-wk-old SCWL roosters(BW 1.6 kg) were randomly alloted to 4 treatments with 5 birds per treatment and one per replicate. The 4 treatments were consisted of two temperature(21~22˚C vs. 34~35˚C) and two dietary fiber treatment(0% and 20% wheat bran), making Experiment I a 2x2 factorial. After 4 d of preliminary period, birds we subjected to 3-d collection period. Sixteen 20-wk-old SCWL roosters(BW 1.6 kg) were employed Experiment H, with two temperature(21~22˚C vs. 34~35˚C) and two wheat bran levels(0% and 20%). Brids were housed in individual metabolism cages under normal temperature(21~22˚C), at fed one of the experimental diet. After 4 d of preliminary period, a respiration trial with open-circuit gravimetric respiratory apparatus was carried out for each bird for 6 h, one by one, normal(20~21˚C) and hot(34~35˚C) temperatures. The ANOVA test and comparisons among treatment means were done at 5% probability level for both experiments. Results obtained from Experiment I and, II were summarized as follows, 1.The amounts of DM intake and excretion were significantly(P<.05) decreased by heat stress. The DM intake was not affected by the addition of 20% wheat bran, however, the amount of DM excretion was significantly increased by the high fiber diet. Thus, the DM metabolizability decreased significantly by the addition of 20% wheat bran. 2. The heat-stressed roosters increased the water intake and excreta moisture content significantly. Although not significant, the water intake tended to increase in roosters fed the 20% wheat bran diet. 3. The amounts of total water input and evaporative water loss were increased significantly by heat stress, and the addition of 20% wheat bran did not exert any influence on the total water input and evaporative water loss. However, roosters fed the 20% wheat bran diet increased the excreta water output significantly. 4. Neither the heat stress nor the dietary fiber did affect the blood pH, pCO2, and HCO$_3$- significantly. 5. The body temperature increased significantly by the heat stress. However, the high fiber deit failed to decrease the body temperature. 6. The heat-stressed roosters decreased the 02 consumption and C0$_2$ production, and increased the evaporative water loss significantly. However, the high fiber diet did not exert any infulence in this regard. It appears that the beneficial effect, if any, of high fibrous diet during heat stress episode may be due to the increased heat loss through the enhanced excreta water.

  • PDF

Quality properties of various dietary fibers as isolated soy protein (ISP) replacements in pork emulsion systems

  • Park, Sin-Young;Oh, Tae-Seok;Kim, Gye-Woong;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.94-102
    • /
    • 2020
  • This study aimed to investigate the possibility of replacing the isolated soy protein (ISP) as a binding agent for wheat, oat, and bamboo shoot dietary fibers. Dietary fibers and ISP were added to manufacturing process of pork emulsion, respectively, for investigate quality properties. Moisture contents of pork emulsion added wheat fiber-treated group was significantly higher than ISP-treated group (p < 0.05), and protein contents of dietary fiber-treated group were significantly lower than ISP-treated group (p < 0.05). Raw pork emulsion CIE a value of oat, bamboo shoot fiber-treated group were significantly lower than ISP-treated group (p < 0.05). After cooking pork emulsion CIE L value of dietary fiber-treated group were significantly higher than ISP-treated group (p < 0.05). Raw pork emulsion water holding capacity (WHC) of wheat, oat fiber-treated group were significantly higher than ISP-treated group (p < 0.05), and cooked pork emulsion WHC of wheat, bamboo shoot fiber-treated group were higher than ISP-treated group (p < 0.05). Cooking loss of ISP-treated group was significantly higher than dietary fiber-treated group (p < 0.05), and viscosity of ISP-treated group was lower than dietary fiber-treated group. Hardness of ISP-treated group was significantly lower than dietary fiber-treated group (p < 0.05); however, cohesiveness of ISP-treated group was significantly higher than dietary fiber-treated group (p < 0.05). In conclusion, dietary fiber added as binding agent to manufacturing process of pork emulsion was suitable to replacing ISP.

Effect of Soybean Milk Residues Powder on the Quality of Dough (두유박 분말 첨가가 식빵 반죽에 미치는 영향)

  • Shin, Doo-Ho;Lee, Yeon-Wha
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.381-391
    • /
    • 2006
  • The rheological properties of dough made the substitution of wheat flour(composite flour) at the levels of 0%, 5%, 10% and 15% soymilk residue flour, with addition of vital wheat gluten at the levels of 3, 6 and 9% were investigated. And nutrition contents of soymilk residue flour were analyzed. The results were as follows; Principal components of soymilk residue flour were 22.0% crude protein, 13.2% crude lipid, 54.3% carbohydrate, 27.2% dietary fiber and $220{\mu}g/g$ isoflavones. Free amino acid component of soymilk residue were L-glutamic acid, L-leucine, L-lysine, L-valine, L-phenylalanine, L-isoleucine, L-threonine, L-methionine and L-cystine. Total dietary fiber content of bread with soymilk residue and wheat flour were 5% soymilk residue; 3.50%, 10% soymilk residues; 4.65%, 15% soymilk residues; 5.96%, and wheat flour bread: 2.1% respectively Mixing water absorption capacity was increased by increasing amounts of added soymilk residue and vital wheat gluten. Dough development time was increased by increasing amounts of added soymilk residues, while decreased by increasing amounts of vital wheat gluten. The dough volume of composite flour with 5%, 10% and 15% soymilk residue flour were the smaller than wheat flour dough. But the dough volume was increased by added vital wheat gluten, and the composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. This study proved that the dough volume of composite flour with 5% soymilk residue flour and 9% vital wheat gluten was better than the others. On the other hand, the soymilk residue flour contains dietary fiber, isoflavone, protein, lipid and carbohydrate. Therefore the soymilk residue flour will be very useful as food material.

Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates

  • Sarwar, M.;Khan, M. Ajmal;Nisa, Mahr-un
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1583-1591
    • /
    • 2003
  • The influence of varying levels of urea and additives on nitrogen (N) retention and chemical composition of wheat straw was studied. The wheat straw was treated with 4, 6 and 8% urea and ensiled with 1.5, 2 and 2.5% of acetic or formic acid and 2, 4 and 6% of corn steep liquor (CSL) or acidified molasses for 15 days. The N content of wheat straw was significantly different across all treatments. The N content of urea treated wheat straw was increased with the increasing level of urea. The N content was higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without these organic acids. The N content of urea treated wheat straw was further enhanced when it was ensiled with CSL or acidified molasses. This effect was significant across all levels of urea used to treat the wheat straw. Nitrogen retention in urea treated wheat straw was decreased linearly as the urea level was increased to treat the wheat straw. The N content was increased linearly when higher levels of CSL or acidified molasses were used to ensile the urea treated wheat straw. Most of the N in urea treated wheat straw was held as neutral detergent insoluble N (NDIN). The NDIN content was increased linearly with the increasing levels of urea and additives. The neutral detergent fiber (NDF) contents were higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without additive. The NDF content further increased in urea treated wheat straw ensiled with CSL and acidified molasses. The entire increase in NDF content was because of fiber bound N. The hemicellulose content of urea treated wheat straw ensiled with CSL or acidified molasses was higher as compared to urea treated wheat straw ensiled with acetic or formic acid. The acid detergent fiber content of urea treated wheat straw ensiled with or without additives remained statistically non-significant. The cellulose contents of wheat straw was linearly reduced when urea level was increased from 4 to 6 and 8% to treat the wheat straw. This effect was further enhanced when urea treated wheat straw was ensiled with different additives. The results of the present study indicated that fermentable carbohydrates might improve the Nitrogen retention and bring the favorable changes in physiochemical nature of wheat straw. However, biological evaluation of urea treated wheat straw ensiled with fermentable carbohydrates is required.

Quality Evaluation of Chicken Nugget Formulated with Various Contents of Chicken Skin and Wheat Fiber Mixture

  • Kim, Hack-Youn;Kim, Kon-Joong;Lee, Jong-Wan;Kim, Gye-Woong;Choe, Ju-Hui;Kim, Hyun-Wook;Yoon, Yohan;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (p<0.05), and increased with increasing the concentrations of SFM-1 and SFM-2. The addition of SFM-1 and SFM-2 had no significant effect on the pH of the samples. The lightness value of uncooked chicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets.