• Title/Summary/Keyword: Whale Optimization Algorithm (WOA)

Search Result 12, Processing Time 0.036 seconds

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy

  • Dehcheshmeh, M. Mohamadi;Hosseinzadeh, A. Zare;Amiri, G. Ghodrati
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.

Hybridized dragonfly, whale and ant lion algorithms in enlarged pile's behavior

  • Ye, Xinyu;Lyu, Zongjie;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.765-778
    • /
    • 2020
  • The present study intends to find a proper solution for the estimation of the physical behaviors of enlarged piles through a combination of small-scale laboratory tests and a hybrid computational predictive intelligence process. In the first step, experimental program is completed considering various critical influential factors. The results of the best multilayer perceptron (MLP)-based predictive network was implemented through three mathematical-based solutions of dragonfly algorithm (DA), whale optimization algorithm (WOA), and ant lion optimization (ALO). Three proposed models, after convergence analysis, suggested excellent performance. These analyses varied based on neurons number (e.g., in the basis MLP hidden layer) and of course, the level of its complexity. The training R2 results of the best hybrid structure of DA-MLP, WOA-MLP, and ALO-MLP were 0.996, 0.996, and 0.998 where the testing R2 was 0.995, 0.985, and 0.998, respectively. Similarly, the training RMSE of 0.046, 0.051, and 0.034 were obtained for the training and testing datasets of DA-MLP, WOA-MLP, and ALO-MLP techniques, while the testing RMSE of 0.088, 0.053, and 0.053, respectively. This obtained result demonstrates the excellent prediction from the optimized structure of the proposed models if only population sensitivity analysis performs. Indeed, the ALO-MLP was slightly better than WOA-MLP and DA-MLP methods.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.