• Title/Summary/Keyword: Wetlands Assessment

Search Result 214, Processing Time 0.022 seconds

Ecological Toxicity Assessment in Wetland Sediments (습지 퇴적물의 생태 환경독성도 평가)

  • Lee, Chan-Won;Kwon, Young-Taek
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.69-85
    • /
    • 2000
  • Wetlands are generally thought to be among the most fertile and productive ecosystems of the world. They provide a variety of ecological functions to the landscape. In recent years there has been considerable research activity to generate more scientific documentation on the ecological functions of wetlands. Many pollutants released to the environment settle and accumulate in the silt and mud called sediment on the bottoms of wetlands. Contaminated sediment can cause adverse effects to aquatic organism and eventually to ecological system. Sediment toxicity test with water fleas has been done by standardized preparation method of pore and elutriate water methods described in the literature for the need to protect Woopo wetlands. The results of Daphnia magna, Ceridaphnia dubla and Simocephalus sp. toxicity test were compared and discussed in terms of the relative sensitivity and discrimination abilities with both pore and elutriate water obtained from the sediments of Woopo wetlands.

  • PDF

BASELINE MEASUREMENTS ON THE PERFORMANCE OF FOUR CONSTRUCTED WETLANDS IN TROPICAL AUSTRALIA

  • Fell, A.;Jegatheesan, V.;Sadler, A.;Lee, S.H.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.316-327
    • /
    • 2005
  • Constructed wetlands provide several benefits that are not solely limited to storm water management and are becoming common in storm water management. In this research, four recently constructed wetlands underwent in situ and laboratory water sampling to determine their efficiency in removing storm water pollutants over a 5-month period. From the sampling results, it was determined that each of the wetlands was able to reduce the concentration of pollutants in the stormwater. To aid in the assessment of the wetlands against each other, a model was developed to determine the extent of removal of stormwater pollutants over the length of the wetland. The results from this model complimented the data collected from the field. Improvements, such as increased amounts of vegetation were recommended for the wetlands with the aim of increasing the effectiveness. Further investigations into the wetlands will allow for better understanding of the wetland's performance.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Functional Assessment of Jilnalnup Wetland by HGM (HGM을 이용한 질날늪 기능평가 연구)

  • Jin, Yi Hua;Li, Lan;Moon, Sang Kyun;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • Wetlands occupy an important ecological position on the earth, carrying out very important functions and roles both ecologically and hydrologically. However, due to past industrialization, not only wetland areas but also the biodiversity of organisms has severely decreased due to several artificial interferences and damage as wetlands began to be perceived simply as targets for development and reclamation. However in recent times, with the importance of wetlands coming to the fore, the assessment of the function and value of wetlands is being made for their wise use and systematic maintenance. Accordingly, this study targeted the Jilnal Wetlands located in Haman, Gyeongnam, and conducted a functional appraisal of this wetland using the modified HGM Model which was modified & developed appropriately for the actual conditions of our country. The result of its appraisal by selecting the Upo Wetland as the reference wetland, which is a criterion of the index, showed a comparatively positive functional index with 0.89 of the Upo Wetland average. This means that the Jilnal Wetland carrys out more than 89% of the functioning of the Upo Wetland. In this regard, it is thought that the Jilnal Wetland could carry out the wetland functioning equivalent to that of the Upo Wetland through a little more systematic management.

A Review of Wetland Policies and Related Guidelines of Leading Nations and Korea with Emphasis on Creation of Artificial Wetlands

  • Lee, Yong-Hee;Lee, Mi-Jin
    • Ocean and Polar Research
    • /
    • v.24 no.1
    • /
    • pp.93-114
    • /
    • 2002
  • Legal regimes of major countries actively involved in wetland programs including USA, Japan, Germany, Netherlands, and Denmark, show that these leading nations have developed their own legal regimes and policies for the conservation and restoration of wetlands since early 1990s. The main feature of their position is to preserve, create and restore wetlands, including tidal flats. However, this approach, so called 'mitigation' policy, is thus far, not a fully established policy but an evolving one. For Korea, there are only a few laws and policies which hint at the importance of creating coastal wetlands as a conservation measure, however, most of those systems only exist as vague provisions which lack any tangible and compulsory implementing procedures and technical guidelines. It seems that it is necessary to strengthen the legal measures for conserving coastal wetlands in Korea including specifying economic assessment methods and funding sources for the creation, restoration and rehabilitation of tidal flats to firmly establish a national wetland mitigation policy.

A Study on the Management Planning for the Conservation and Environmentally Friendly Use of Korean Coastal Wetlands (우리 나라 연안습지의 보전과 환경친화적 관리방안에 관한 연구)

  • Park, Tae-Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.64-73
    • /
    • 1999
  • The purpose of this study is to establish the management plannings for the conservation and environmentally friendly use of Korean coastal wetlands. The function, economic value, and the necessity for the conservation of coastal wetlands are described. The current management status, Korean Governmental policies for the use of coastal wetlands, and their problems are surveyed and analysed. The management plannings for the environmentally friendly use of Korean coastal wetlands is suggested as follows: (1) The coastal wetlands need to be divided into 3 different regions based on PSR(Pressure, State, Response) of OECD. (2) Each region should be managed by appropriate management plans which are suggested in Chapter IV of this paper. Finally, in order to realize these management plannings the change of Governmental system and laws are suggested as follows: (1) The change of relevant laws is required. Additionally, each region should managed by proper governmental agencies. (2) The EIA(Environmental Impact Assessment) system should be improved. (3) The participation of regional people should be guaranteed in the decision making processes of the business and other important planning regarding coastal wetlands. (4) The system which primed the ecological value of coastal wetlands should be established.

  • PDF

The Type Classification and Function Assessment at Small Palustrine Wetland in Rural Areas (농촌지역 소규모 소택형습지의 유형분류 및 기능평가 연구)

  • Son, Jin-Kwan;Kim, Nam-Choon;Kang, Bang-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.117-131
    • /
    • 2010
  • This study was conducted to utilize as basic information for the construction of conservation and estimation system for Palustrine wetland, which was badly managed and imprudently reclaimed, through the analysis of distribution characteristics and the estimation of conservation value for sample sites (eight wetlands) in rural area. As the result of wetland type classification, these wetlands was classified by 4 types (Permanent freshwater marshes/pools, ponds, Aquaculture ponds, and Seasonally flooded agricultural land) by Ramsar system, 3 types (Emergent Wetland, Aquatic Bed, and Scrub-Shrub Wetland) by NWI (Cowardin) System, 5 types (Farm Pond Depression, Under-flow wetland, Man-made Pond Depression, Abandoned Paddy Fields Wetland, and Reservoir Shore) by National Wetland's Categorical System, and 3 types (Aquatic Bed Wetland, Emergent Wetland, and Forested Wetland) by Lee (2000) System. These results suggest us developing the new type classification system for small Palustrine wetland in Korean rural areas. The score of function assessment (The Modified RAM) for small Palustrine wetlands was high at the wetlands nearby hills and rice paddy fields, and low at those nearby upper fields, which was mainly affected by land-use and vegetation. The functions as 'Flood/Storm Water Storage', 'Runoff Attenuation', 'Water Quality Protection' were resulted by the structural difference of inflow and outlet. Some functions as 'Wetland size', 'Wetland to immediate watershed ratio', 'Presence of boat traffic', 'Maximum water depth', 'Fetch of water's body' of RAM were not appropriate in evaluation of small wetlands in rural area. Which suggest us developing the new function assessment system for small Palustirne wetland in Korean rural areas.

The Spatial Distribution Analysis of Coastal Wetland Vegetation in Sihwa Lake (시화호 연안습지 식생의 공간 분포 분석)

  • Jeong, Jong-Chul;Cho, Hong-Lae
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.2
    • /
    • pp.105-112
    • /
    • 2008
  • Human activity has been the major threat to wetlands. Agriculture, industrial development, and urban and suburban sprawl have caused the greatest losses of coastal wetlands. In fact, riceland agriculture, because of the flooding that goes with it, provides some additional wetland habitat not otherwise available. The biggest current source of loss for freshwater coastal wetlands is from urban sprawl. In this study, spatial analysis method such as landscape index were applied to Sihwa area in Ansan city. The SMA (Spectral Mixture Analysis) method using Landsat image showed the change distribution of wetland vegetation from 1996 to 2004. The southern part of Sihwa wetland have been changed with Suda japonica of 24% and reed vegetation of 34% on coastal wetland which were covered with tidal flat.

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

Introduction to National Mid-term Fundamental Plan for Wetlands Conservation and Management (습지보전.관리를 위한 국가 중장기 계획 소개)

  • Kim, Taesung;Jeong, Jiwoong;Moon, Sangkyun;Yang, Heesun;Yang, Byeonggug
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.519-527
    • /
    • 2013
  • The Ministry of Environment of the Republic of Korea set up 'the $2^{nd}$ Fundamental Plan for Wetlands Conservation' to facilitate systematic surveys and management of various national wetlands and to promote sustainable conservation and use of those wetlands. The mid-term fundamental plan was established in accordance with the Article 5 of the Wetland Conservation Act, which spans 5 years from 2013 to 2017 and covers national wetlands including inland wetlands and coastal wetlands stated in the Act. The fundamental plan aims to promote the wise use of wetlands through establishing policies for sustainable conservation based on the assessment of implementation of the $1^{st}$ Fundamental Plan, setting up a scientific framework for establishment and implementation of national wetland policies by improving wetland survey systems and enhancing basis wetland data, improving the ecological health of wetlands and securing biodiversity conservation of wetlands by strengthening conservation and management system of national wetlands, and through raising public awareness and diversify education and promotion tools. The main objectives of the $2^{nd}$ Fundamental Plan is to revise the entire Wetland Conservation Act, to create a new monitoring system of national inland wetlands, to upgrade the national wetlands inventory, to reflect the 'Ecological Map' for promoting precautionary management of wetlands, to improve the 'Wetland Restoration and Management' system to build wetlands resilience, and to systematize the wise use of wetlands that benefits local people. As the Ministry of Environment plans to establish its other master plan for wetland conservation based on the $2^{nd}$ Fundamental Plan, this document introduces the $2^{nd}$ Fundamental Plan to stakeholder and wetland professions.