• Title/Summary/Keyword: Wetland

Search Result 1,347, Processing Time 0.031 seconds

Stormwater treatment using Wetland and Pond (습지와 유수지를 이용한 강우 유출수 처리)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Koo, Won-Suk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.575-578
    • /
    • 2003
  • Constructed wetlands have become a popular technology for treating contaminated surface and wastewater. In this study, the field experiment to reduce nonpoint source pollution from watershed runoff during rainy day using wetland and pond. TSS and T-N removal rate of wetland-pond system and pond-wetland system was 91% and 73%, 94% and 70%, respectively and values were same range. $BOD_5$ and T-P removal rate of pond-wetland system (38% and 78%) was higher than wetland-pond system (27% and 62%). overall, pond-wetland system is more useful than wetland-pond system to control NPS.

  • PDF

Selection of Plant for Constructing Ecological Wetlands On the Rooftop Greening (옥상 내 인공 생태습지 조성에 적용 가능한 식물종 선발)

  • Kwon, Hyo Jin;Kim, Yoo Sun;Ryu, Byung Yeol
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2010
  • The purpose of this study was to create an artificial wetland in rooftop greening. We monitored species and changes of flora in wetland and rooftop greening. As shown the consideration and possibility of supplying the artificial wetland in rooftop greening through flora in wetland, this study tried to find methods to create a efficient flora space. This results are listed as belows. The species were applied to artificial wetland in rooftop greening and come up to 'General standard for selecting plants' among hydrophyte in wetlands. The plants of Potentilla kleiniana, Penthorum chinense, Scirpus radicans, Scirpus triqueter, Veronica undulata, Mentha arvensis var. piperascens, Salvia plebeian, Sagittaria aginashi, Aneilema keisak, Stachys riederi, Alisma canaliculatum, Eclipta prostrata, Sparganium stoloniferum turned out an appropriate species. This research was expected to create a various environment and component of species by introducing many types of plants in ecological wetland on rooftop greening.

Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland

  • Jiyeol Im;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • Urbanization has been causing such new pollutants as micro-plastic, thus the environmental impact of new pollutants on ecosystem is rapidly increasing. When it comes to micro-plastic, a representative artificial trace pollutant, its risk has been increased at a much faster rate, however the depth study associated with stormwater sediment and wetland was relatively rare. In this research, soil samples from storm water sediment were analyzed for distribution characteristics of micro-plastics in the J wetland (registered as Ramsar wetland, May 2021 and a representative environmental site in South Korea). Analyzed soil samples found approximately 201 ± 93 particle/kg (based on unit weight, Total micro plastic particles / Total Sample weight) micro-plastics in the samples. When considering the total quantitative numbers in stormwater sediment in the entire area of the J wetland, over 15,000 micro-plastics were estimated to be contaminating such area. In addition, in terms of qualitative numbers, micro-plastics were contaminating the J wetland with 94.7 % ratio of styrofoam type (43.9%) and polyethylene type (50.8%). These research results can be used as base data sets for controlling micro-plastics in the J wetland.

Formation Processes of Hwaeomneup Wetland, Cheonseong Mountain (천성산 화엄늪의 형성과정)

  • Son, Myoung-Won;Chang, Mun-Gi
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.2
    • /
    • pp.204-214
    • /
    • 2009
  • The purpose of this paper is to elucidate the formation processes of Hwaeumneup in Cheonseong Mountain which was designated as Wetland Conservation Area in 2002, and to offer data essential to sustainable management of wetland. According to wetland core samples and carbon dating of humus, grassland of Hwaeumneup Wetland Reservation resulted from slash-and-burn agriculture in no reference with climatic changes of last glacial period. And Hwaeumneup is a alpine wetland that is formed as rain water over Cheonseong Mountain crest area infiltrates into bedrock, springs out along joint line below main ridge, and dampens gentle grassland. It needs to support dense vegetation of southwestern ridge of Wetland Reservation in order to sustain water volumn of Hwaeumneup wetland, and to keep from breakdown of block dam at downstream fringe of wetland. And it needs to measure and analyse micro-topography and hydrology changes in Hwaeumneup Wetland Reservation through periodic monitoring.

  • PDF

Analysis of Seasonal Water Quality Variation of a Natural Wetland in the Nakdong River Basin (낙동강 수계 자연습지의 계절별 수질변화특성 분석)

  • Kim, Young Ryun;Lee, Kwang Sup;Lee, Suk Mo;Kang, Daeseok;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • A natural wetland in the Nakdong River basin which effectively removes non-point source pollutants was investigated for 2 years to understand wetland topography, vegetation types, and water quality characteristics. The water depth of the natural wetland was in the range of 0.5~1.9 m which is suitable for the growth of non-emergent hydrophytes. The wetland has a high length to width ratio (3.3:1) and a relatively large wetland to watershed area ratio (0.057). A broad-crested weir at the outlet increases the retention time of the wetland whose hydrology is mainly dependent on storm events. The concentrations of dissolved oxygen in the growing season and the winter season showed anoxic and oxic conditions, respectively. Diurnal variations of DO and pH in the growing season were also observed due to weather change and submerged plants. COD and TP concentrations were low in the winter season due to low inflow rate and increased retention time. Increased TP concentrations in the spring season were caused by degradation of dead wetland plants. Nitrogen in the wetland was mostly in organic nitrogen form (>75%). During the growing season, ammonium concentration was high but nitrate nitrogen concentration was low, possibly due to anoxic and low pH conditions which are adverse conditions for ammonificaiton and nitrification. The results of this study can be used as preliminary data for design, operation, monitoring and management of a constructed wetland which is designed to treat diffuse pollutants in the Nakdong river watershed.

Fungal Clusters and Their Uniqueness in Geographically Segregated Wetlands: A Step Forward to Marsh Conservation for a Wealth of Future Fungal Resources

  • Park, Jong Myong;Hong, Ji Won;Lee, Woong;Lee, Byoung-Hee;You, Young-Hyun
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.351-363
    • /
    • 2020
  • Here, we investigated fungal microbiota in the understory root layer of representative well-conserved geographically segregated natural wetlands in the Korean Peninsula. We obtained 574,143 quality fungal sequences in total from soil samples in three wetlands, which were classified into 563 operational taxonomic units (OTU), 5 phyla, 84 genera. Soil texture, total nitrogen, organic carbon, pH, and electrical conductivity of soil were variable between geographical sites. We found significant differences in fungal phyla distribution and ratio, as well as genera variation and richness between the wetlands. Diversity was greater in the Jangdo islands wetland than in the other sites (Chao richness/Shannon/Simpson's for wetland of the Jangdo islands: 283/6.45/0.97 > wetland of the Mt. Gariwang primeval forest: 169/1.17/0.22 > wetland of the Hanbando geology: 145/4.85/0.91), and this variance corresponded to the confirmed number of fungal genera or OTUs (wetlands of Jangdo islands: 42/283> of Mt. Gariwang primeval forest: 32/169> of the Hanbando geology: 25/145). To assess the uniqueness of the understory root layer fungus taxa, we analyzed fungal genera distribution. We found that the percentage of fungal genera common to two or three wetland sites was relatively low at 32.3%, while fungal genera unique to each wetland site was 67.7% of the total number of identified fungal species. The Jangdo island wetland had higher fungal diversity than did the other sites and showed the highest level of uniqueness among fungal genera (Is. Jangdo wetland: 34.5% > wetland of Mt. Gariwang primeval forest: 28.6% > wetland of the Hanbando geology: 16.7%).

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Hydrogeomorphological Characteristics and Landscape Change of Oegogae Wetland in Jirisan National Park (지리산 외고개습지의 수문지형특성과 경관변화)

  • YANG, Heakun;LEE, Haemi;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Oegogae wetland is sub-alpine wetland which is formed in piedmont area in Jirisan National Park. Apparently Oegogae wetland seems to be well-protected wetland. Most alpine wetlands are located in the summit area, but Oegogae wetland is located in piedmont area which is transitional zone between the steep slope and relatively flat valley bottom. Oegogae wetland is active in terms of sedimentation and exceeds 1m in depth. Penetration tests show that composing material is soft such as peat and organic-rich sediment. Basal rock of the basin is gneiss and gneissic schist in general, which is good for the formation of wetland because those rocks are easy to form low permeability layer. Baseflow from the wetland takes control of the most of stream flow during the wet season and this is especially true during the dry season. Precipitation during the wet season increases water content and base flow from the wetland.

Case study: Runoff analysis of a mountain wetland using water balance method (물수지 방법을 이용한 산지습지의 유출 변동성 분석 - 금정산 장군습지를 대상으로 -)

  • Oh, Seunghyun;Kim, Jungwook;Chae, Myung-Byung;Bae, Younghye;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • It is very important to analyze water balance in the mountain wetland for the sustainable management of the wetland. In this study, the SWAT model was used to analyze the water balance of Janggun wetland located in Geumjeong mountain of Gyungnam province, Korea. The data such as rainfall and water level measured in Janggun wetland were used for water balance analysis and from the analysis we have known that the rainfall of 10mm within 8 days is required for maintaining an appropriate water level in Janggun wetland. Also, water balance analysis in the wetland for the period of 2009 to 2017 was performed by using hydro-meteorological data obtained from Yangsan weather station which is located around Janggun wetland. From the analysis results, we have known that the amount of rainfall was relatively small in 2010, 2012 and 2015 and water shortage was occurred in the wetland. Especially, water shortage was occurred during the summer that we had intensive rainfall for very short time and faster removal of the runoff from the wetland. Therefore, we may need extend water courses from a wetland watershed to the wetland for preventing land-forming of the wetland and also store water by banking up the wetland for preventing the decrease of water level in the wetland.

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.