• Title/Summary/Keyword: Wet spinnability

Search Result 7, Processing Time 0.023 seconds

The Effect of Coagulant and Molecular Weight on the Wet Spinnability of Regenerated Silk Fibroin solution

  • Yoo, Young-Jin;Kim, Ung-Jin;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • The regenerated silk fibroin with various molecular weights (MW) was prepared by different dissolution condition and the effect of coagulant on the wet spinnability of the various MW silk fibroin solutions dissolved in formic acid was investigated by the observation of wet spun filament in coagulant and the measurement of maximum draw ratio. The observation on the wet spun filament in coagulation bath revealed that good fibers without bead were formed in a high MW and a very high MW silk fibroin samples. In contrast, beads were observed in the silk fibroin sample with medium MW. The maximum draw ratio of wet spun silk fibroin filament decreased with MW reduction. The decrease of maximum draw ratio in isopropanol, acetone, DMF and THF was remarkably higher than that in methanol and ethanol, indicating that the coagulant type strongly influenced the wet spinnability. The two simple evaluation methods used in this study showed complementary information for wet spinnability: (a) The observation of filament in coagulant was effective to check a continuous fiber formation and a bead formation, and (b) the maximum draw ratio measurement was useful to examine the post drawing ability related to molecular orientation.

The Effect of HPMC Concentration on the Morphology and Post Drawing of Wet Spun Regenerated SF/HPMC Blend Filaments

  • Ko, Jae-Sang;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.181-185
    • /
    • 2009
  • In this paper, the regenerated silk fibroin (SF)/hydroxypropyl methylcellulose (HPMC) blend filaments were prepared by wet spinning and the effect of HPMC concentration on the post drawing and morphology of blend filaments was elucidated. The result of maximum draw ratio indicated that the wet spinnability of wet spun SF / HPMC was improved with increasing HPMC concentration until 8% and remained constant after that concentration. The SEM observation revealed that the enhanced wet spinnability of blend filaments was strongly related to the morphological change by increasing HPMC concentration. Regardless of HPMC concentration, as SF content was reduced, the wet spinnability of blend film decreased resulting in reduced maximum draw ratio. It was also found by SEM observation that the cross section of blend filament deviated from circularity with an increase of HPMC content.

The Effect of Dissolution Condition on the Yield, Molecular Weight, and Wet- and Electro-spinnability of Regenerated Silk Fibroins Prepared by LiBr Aqueous Solution

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • In this paper, the regenerated silk fibroins were dissolved in LiBr aqueous solution with different dissolution temperature and time, and the effects of the dissolution condition on the regeneration yield, molecular weight, wet spinnability, and electrospinnability of regenerated silk fibroin were investigated. The regeneration yield, molecular weight distribution, and wet spinnability of regenerated silk fibroin were nearly affected by the dissolution temperature and time. However, the electrospinning performance of silk fibroin was influenced by the dissolution condition implying the electrospinning of silk fibroin is more sensitive process than the wet spinning in the range tested in this study. While $25^{\circ}C$ of dissolution temperature resulted in a good electrospinnability of regenerated silk fibroin, the electrospinnability was slightly deteriorated when silk fibroin was dissolved at $60^{\circ}C$ for 6 hours. Also, though the fiber diameters of electrospun silk fibroin produced by the dissolution at $25^{\circ}C$ for 6 hours and 24 hours were 443 and 451 nm, respectively, that at $60^{\circ}C$ for 5 min was reduced to 411 nm. The fiber diameter was more decreased to 393 nm when the dissolution time increased up to 6 hours at $60^{\circ}C$.

Effect of different Bombyx mori silkworm varieties on the wet spinning of silk fibroin

  • Jang, Mi Jin;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The wet spinning of silk solution has attracted researchers' attention because of 1) unique properties of silk as a biomedical material and 2) easy control of the structure and properties of the regenerated silk fiber. Recently, studies have reported that different silkworm varieties produce silk with differences in the molecular weight (MW) and other mechanical properties of the regenerated silk fibroin (SF) film. In this study, we look at the effect of different Bombyx mori varieties on the wet spinning of SF. Although five regenerated SFs from different silkworm varieties have different MWs and solution viscosity, the wet spinnability and post drawing performance of regenerated SFs were not different. This result is due to low variability in the MW of the regenerated SF samples from the different silkworm varieties. In addition, unlike regenerated SF films, the mechanical properties of wet spun regenerated SF filament were not affected by silkworm variety. This result suggests that the mechanical properties of wet spun SF filament are less affected by MW than those of SF film are.

The Effect of Coagulant on the Post Drawing and Morphology of Wet Spun Regenerated SF/Nylon 6 Blend Filaments

  • Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper, the regenerated silk fibroin (SF)/nylon 6 blend filaments were fabricated using wet spinning technique and the effect of coagulant on the post drawing and morphology of blend filaments was investigated. In the result of wet spinnability, methanol, acetone, DMF, and THF showed relatively good coagulation strength and fiber formation for the regenerated SF. On the contrary, they did not exhibit strong enough to produce a uniform nylon 6 filament due to the lack of coagulation strength. In the examination of post drawing performance, methanol showed the highest maximum draw ratio of the blend filament over all blend ratios. The maximum draw ratio of SF/nylon 6 blend filaments decreased with the reduction of SF content regardless of type of coagulant. SEM observation showed the consistent result with that of post-drawing performance. As SF content decreased, the uniform and regular structure was changed to irregular one. In particular, the severe macro-phase separation between SF and nylon 6 could be detected in the 50/50 SF/nylon 6 blend filaments coagulated in methanol and THF.

Fabrication of silk nanofibril-embedded regenerated silk fibroin composite fiber by wet spinning

  • Chang Hyun, Bae;In Chul, Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Wet-spun regenerated silk fibroin (RSF) fibers have been extensively studied owing to their 1) useful properties as biomaterials, including good blood compatibility and cyto-compatibility; 2) the various methods available to control the structural characteristics and morphology of the fiber, and 3) the possibility of fabricating blended fibers and new material-embedded fibers. In this study, silk nanofibrils prepared using a new method were embedded in RSF to fabricate wet-spun silk nanofibril/RSF composite fibers. Up to 2% addition of silk nanofibril, the silk nanofibril/RSF dope solution showed slight shear thinning, and the G' and G" of the dope solution were similar. However, above 3% silk nanofibril content, the viscosity of the dope solution significantly increased. In addition, shear thinning was remarkably evident, and the G' of the dope solution was much higher than the G", indicating a very elastic state. As the silk nanofibril content was increased, the wet-spun silk nanofibril/RSF composite fiber became uneven, with a rough surface, and more beaded fibers were produced. Scanning electron microscopy observations revealed that the beaded fibers were attributed to the inhomogeneous dispersion and presence of agglomerates of the silk nanofibrils. As the silk nanofibril content and RSF concentration increased, the maximum draw ratio decreased, indicating the deterioration of the wet spinnability and post-drawing performance of silk nanofibril/RSF.

Physical Property of PTT/Wool/Modal Air Vortex Yarns for High Emotional Garment (고감성 의류용 PTT/울/모달 에어 볼텍스 복합사의 물성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.6
    • /
    • pp.877-884
    • /
    • 2015
  • Polytrimethylene Terephthalate (PTT) is an eco-fiber with good elastic properties; however, it requires more detailed studies related to spinnability according to blending of various kinds of fibers. The evolution of spinning technology was focused on improved productivity with good quality; in addition, air vortex spinning was recently invented and applied on the spinning factory as the facility with good productivity and quality. More detail spinning technology according to the blending of various kinds of fibers on the air vortex spinning system is required to obtain good quality yarns for high emotional fabrics. In this paper, the physical properties of air vortex, compact and ring staple yarns using PTT/wool/modal blend fibers were investigated with yarn structure to promote high functional PTT that includes fabrics for high emotional garments. Unevenness of air vortex yarns was higher than those of compact and ring yarns; in addition, imperfections were greater than those of compact and ring yarns, which was attributed to a fascinated vortex yarn structure. Tenacity and breaking strain of air vortex yarns were lower than those of compact and ring yarns, caused by higher unevenness and more imperfections of air vortex yarns compared to compact and ring yarns. Vortex yarns showed the highest initial modulus and ring yarns showed the lowest ones which results in a stiff tactile feeling of air vortex yarns in regards to the initial modulus of yarns. Dry and wet thermal shrinkages of air vortex yarns were lower than ring yarns. Good shape retention of vortex yarns was estimated due to low thermal shrinkage.