• Title/Summary/Keyword: Wet equipment

Search Result 116, Processing Time 0.023 seconds

The Study on the Deadlock Avoidance using the DAPN and the Adjacency Matrix (DAPN과 인접행렬을 이용한 교착상태 회피에 대한 연구)

  • Song, Yu-Jin;Lee, Jong-Kun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The Flexible Management System (FMS) consists of parallel and concurrent machines, pieces of equipment, and carrying systems classified as buffers, tools, and routers, respectively. The concurrent flow of multiple productions in a system is competed with one another for resources and this resulting competition can cause a deadlock in FMS. Since a deadlock is a condition in which the excessive demand for the resources being used by others causes activities to stop, it is very important to detect and prevent a deadlock. Herein a new algorithm has been studied in order to detect and prevent deadlocks, after defining a relationship between the general places and resource share places in Petri nets like as DAPN: Deadlock Avoidance Petri Net. For presenting the results, the suggested algorithms were also adapted to the models that demonstrated FMS features.

  • PDF

A Study on the Hygiene Management of Ultrasound Probe (초음파 탐촉자의 위생관리에 관한 연구)

  • Ha, Myeong-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.87-96
    • /
    • 2020
  • This study examined the hygiene management of ultrasound probes by examining the cleaning tools for hygiene management of ultrasound probes, the presence or absence of wearing glove as a personal protective equipment, and the awareness of ultrasound probe hygiene. Parts 154 questionnaire about people working in the ultrasound room were surveyed and analyzed. The single gel removal tool of the ultrasound probe was most frequently used with a 48.7% cotton towel, and for double gel removal tools, the first gel removal tool was 42.4% cotton towel and the second gel removal tool was used with 57.6% wet tissue. Antimicrobial wipes were the most commonly used drug and instrument used in ultrasound hygiene management at 58.4%. According to the survey of the presence or absence of wearing glove during ultrasound examination, 46.8% were found to be unworn. When examining the intracavity ultrasound, 30.9% of those who do not wear glove and 61.0% of hygiene awareness of ultrasound probes are 'normal'. According to age, ultrasound probe gel removal tool was not significant difference(p>0.05). According to the working organization and the working department, it was significant difference to wearing gloves during ultrasound examination(p<0.05). Therefore, in order to properly sanitize the ultrasound probe, it is considered that a guideline for hygiene management of the ultrasound probe that fits the situation in Korea is necessary, and it is considered that thorough hygiene management training for inspector is necessary for efficient hygiene management of the ultrasound probe.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

The Study for the CMP Automation wish Nova Measurement system (NOVA System을 이용한 CMP Automation에 관한 연구)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator, removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistency. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfect Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

Effect of Nylon/Aramid Filaments Characteristics on the Physical Property of Air Textured Yarns for Protective Garment (Nylon/아라미드 원사특성이 방호의류용 에어텍스쳐사의 물성에 미치는 영향)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.75-82
    • /
    • 2014
  • This study investigated the physical properties of aramid/nylon ATY and aramid ATY for protective garments according to the aramid and nylon characteristics fed on the core and effect components of air jet texturing equipment. Tenacity decrease of aramid ATY was much more higher than that of nylon ATY because of slick of aramid filament surface. Tenacity of aramid/nylon ATY was most affected by the tenacity of nylon on the effect component of ATY. Breaking strain of nylon ATY was two times higher than that of nylon before air jet texturing, then, in case of aramid ATY and aramid/nylon ATY, were 5.9-6.7 times higher than those before air jet texturing. Initial modulus decrease of aramid ATY showed 86.5% of initial modulus of aramid before air jet texturing, then aramid/nylon hibrid ATY showed arithmetic average value of initial modulus of aramid and nylon ATY. Wet and dry thermal shrinkages of aramid/nylon hybrid ATY were dominated by those of nylon filament on the effect component of ATY.

Development of CCD(Corrosion Control Document) in Refinery Process (정유공정의 CCD(Corrosion Control Document) 개발)

  • Kim, Jung-Hwan;Kim, Ji-Yong;Lee, Young-Hee;Park, Sang-Rok;Suh, Sun-Kyu;Lee, Yoon-Hwa;Moon, Il
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper focuses on techniques of improving refinery reliability, availability, and profitability. Our team developed a corrosion control document(CCD) for processing of the crude distillation unit(CDU). Recent study shows the loss due to corrosion in US is around $276 billion. It's a big concern for both managers and engineers of refinery industry. The CCD consists of numerous parts namely damage mechanism(DM), design data, critical reliability variable(CRV), guidelines, etc. The first step in the development of CCD is to build material selection diagram(MSD). Damage mechanisms affecting equipments and process need to be chosen carefully based on API 571. The selected nine DM from API 571 are (1) creep/stress rupture, (2) fuel ash corrosion, (3) oxidation, (4) high temperature sulfidation, (5) naphthenic acid corrosion, (6) hydrochloric acid(HCL) corrosion, (7) ammonium chloride(salt) corrosion, (8) wet $H_2S$ corrosion, and (9) ammonia stress corrosion cracking. Each DM related to corrosion of CDU process was selected by design data, P&ID, PFD, corrosion loop, flow of process, equipment's history, and experience. Operating variables affecting severity of DM are selected in initial stage of CRV. We propose the guidelines for reliability of equipments based on CRV. The CCD has been developed on the basis of the corrosion control in refinery industry. It also improves the safety of refinery process and reduces the cost of corrosion greatly.

Modelling the wide temperature range of steam table using the neural networks (신경회로망을 사용한 넓은 온도 범위의 증기표 모델링)

  • Lee, Tae-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2008-2013
    • /
    • 2006
  • In numerical analysis on evaluating the thermal performance of the thermal equipment, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table itself cannot be used without modelling. In this study applicability of neural networks in modelling the wide temperature range of wet saturated vapor region was examined. the multi-layer neural network consists of a input layer with 1 node, two hidden layers with 10 and 20 nodes respectively and a output layer with 6 nodes. Quadratic and cubic spline interpoations methods were also applied for comparison. Neural network model revealed similar percentage error to spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the wide range of the steam table.

Optimal Control Strategies for Energy Saving of Central Cooling System with Outdoor Air Temperature Changes (외기온도 변화특성을 고려한 중앙냉방시스템의 에너지 절감 최적제어에 관한 연구)

  • Park, Ki-Tae;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4260-4266
    • /
    • 2015
  • In this study, the optimal control method for minimizing of energy consumption for central cooling system with proper occupant comfort level is researched by simulation. The optimal control method is that the optimal set temperatures such as the condenser water temperature, supply air temperature, and chilled water temperature with environment variable change such as outdoor air dry-bulb and wet-bulb temperatures are obtained by suggested optimal control algorithm with maximum and part building load. The TRNSYS program is used for system modeling and the control performances with the suggested optimal control method are compared with the existing control method of fixed set points. The suggested optimal control method shows better responses in energy consumption in comparison with existing control ones.

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

Evaluation of Occupational Exposure to Noise and Heat stress in Coal-fired Power Plants (석탄화력발전소 작업자의 소음과 온열 스트레스에 대한 노출 평가)

  • Jiwoon Kwon;Kwang-Myong Jang;Sungho Kim;Se-Dong Kim;Miyeon Jang;Jiwon Ro;Seunghyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.464-470
    • /
    • 2023
  • Objectives: This study evaluated occupational exposures to noise and heat stress during routine non-outage works in three coal-fired power plants in the Republic of Korea. Methods: The data were collected during the summer of 2020. Full shift noise exposure of 52 workers were measured using noise dosimeters. Heat stress of 16 worksites were measured for 70 minutes using wet-bulb globe temperature monitors. Results: The noise dosimetry results revealed time-weighted averages that ranged from 47.5 to 88.9 dBA. 2 out of 52 noise measurements exceeded 85 dBA. Based on the arithmetic mean, the coal service group showed the highest level at 80.2 dBA by job tasks. Noise exposures exceeding 85 dBA were measured in the coal service and plant operator group. Heat stress index measurements ranged from 20.3℃ to 37.2℃. 1 out of 9 indices measured in coal facilities and 4 out of 7 indices measured in boiler house exceeded 1 hour TWA during moderate work. Heat stress indices measured from boiler houses were significantly higher than those measured from coal equipment. Conclusions: The results show that overexposure to noise and heat stress may be encountered during routine non-outage work activities in coal-fired power plants. Appropriate actions should be taken to reduce future health outcome from occupational exposure to noise and heat stress in the industry.