• Title/Summary/Keyword: Wet digestion

Search Result 55, Processing Time 0.026 seconds

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Studies on Feed Intake and Nutrient Utilization of Sheep under Two Housing Systems in a Semi-arid Region of India

  • Bhatta, Raghavendra;Swain, N.;Verma, D.L.;Singh, N.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.814-819
    • /
    • 2004
  • An investigation was carried out to study the effect of two housing systems on feed intake and nutrient utilization of sheep in a semi-arid region of India. Two types of housing managements were adopted. The first was a shed- 20'${\times}$10' structure with all the four sides of 6' chain link fencing with central height of 10'. The roof was covered with asbestos sheets, with mud floorings. The second was an open corral- 20'${\times}$10' open space with all the four sides covered with 6' chain link fencing. Thirty-four (32 ewes and 2 rams) sheep were grazed together on a 35 ha plot of native range. All the sheep were grazed as a flock from 08:00 to 17:00 h during the yearlong study. The flock was divided into two groups (16 ewes+1 ram) in the evening and housed according to two housing systems (Shed and Open Corral). Three digestion trials were conducted during three defined seasons of monsoon, winter and summer seasons to determine the effect of housing on nutrient intake and utilization. Blood samples were collected in three seasons for the estimation of hemoglobin and glucose. Dry and wet bulb temperatures were recorded at 06:00 A.M. and 09:00 P.M. using suitable thermometers both inside the shed and in the open corral and temperature humidity index (THI) was calculated. There was significant (p<0.05) difference in the THI between shed and open corral in all the seasons, indicating that the shed was always warmer compared to open corral. The daily dry matter intake (DMI, g/d) was 965, 615 and 982 in sheep housed under shed and 971, 625 and 1,001 in those housed in open corral during monsoon, winter and summer season, respectively. These differences were however non-significant (p>0.05). The digestibility of DM was 45.92, 45.13 and 50.30 in sheep housed under shed and 43.64, 45.02 and 55.02 in sheep housed in open corral during monsoon, winter and summer seasons, respectively. There was no significant (p>0.05) difference in the digestibility of nutrients in sheep maintained under shed and in open corral. Blood Hb concentration was 13.97, 14.13 and 13.15 in sheep housed under shed and 15.27, 13.63 and 14.82 in those kept in open corral, whereas blood glucose concentration was 59.67, 59.70 and 52.33 in sheep under shed and 61.00, 61.00 and 57.83 in open corral, during monsoon, winter and summer, respectively. There was also no significant effect of housing on the body weight changes, wool yield and survivability in ewes. Although housing had no significant effect on nutrient intake, their utilization and blood parameters, there was significant effect on the physiological responses and energy expenditure of sheep maintained under the two housing systems (Bhatta et al., 2004). It can be concluded from this study that the housing systems didn't have any significant effect on the nutrient intake and utilization of native breed like Malpura, which were well adapted to the hot semi-arid conditions of India. However, while deciding provisions for housing of different breeds of sheep (both crossbred and native) parameters like physiological responses, energy expenditure, health conditions and overall economics of the systems should be taken into consideration.

Dietary Intakes, Serum Concentrations, and Urinary Excretions of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean Young Adult Women (일부 젊은 성인여자의 Fe, Zn, Cu, Mn, Se, Mo 및 Cr의 식사섭취, 혈청농도 및 소변배설)

  • Kim, Kyune-Hee;Lim, Hyeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.762-772
    • /
    • 2006
  • This study was conducted to investigate dietary intakes, serum concentrations, and urinary excretions of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), selenium (Se), molybdenum (Mo), and chromium (Cr) of Korean young adult women. A total of 19 apparently healthy young adult women aged in their twenties or thirties participated voluntarily. One-tenth of all foods they consumed for 3 consecutive days were collected, all urine excreted for the same 3 days was gathered, and fasting venous blood was withdrawn for the trace mineral analyses. Of the food, blood, and urine samples, the contents of Zn, Cu, Mn, Se, Mo, and Cr were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and that of Fe by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after wet digestion. The intake of Fe, $6.94{\pm}2.18mg$, did not meet the estimated average requirement (EAR) for Korean women aged 20-29 years old. On the contrary, the intakes of Zn ($9.35{\pm}4.95mg$), Cu ($1.18{\pm}0.26mg$), and Mn ($3.69{\pm}0.69mg$) were sufficient for each respective EAR. However, some of the subjects did not take the EAR for Zn. The Se intake, $41.93{\pm}9.28{\mu}g$, however, was almost similar to the EAR for Se. Although there are no references for Mo and Cr, the intakes of these minerals ($134.0{\pm}49.1\;and\;136.5{\pm}147.9{\mu}g$, respectively) seemed to be excessively sufficient. Serum Fe concentration, $88.7{\pm}36.8{\mu}g/dL$, seemed to be a little bit lower than its reference median but within its normal range. Approximately one-fourth of the subjects were in anemic determined by Hb and Hct and below the deficiency serum level of Fe, $60{\mu}g/dL$. In addition, serum Se concentration, $3.73{\pm}0.60{\mu}g/dL$, was also below its reference median and normal range. However, serum concentrations of Zn ($99.6{\pm}30.6{\mu}g/dL$) and Mo ($0.25{\pm}0.10{\mu}g/dL$) were fairly good compared to each reference median. The status of Cu could be determined as good although its serum concentration ($91.6{\pm}14.6{\mu}g/dL$) was slightly below its reference median. Since there are no decisive reference values, it was not easy to evaluate serum concentrations of Mn ($0.93{\pm}0.85{\mu}g/dL$) and Cr ($8.60{\pm}7.25{\mu}g/dL$). But Mn and Cr status seemed to be adequate. Urinary Fe excretion, $4.48{\pm}1.98{\mu}g/dL$, was pretty much lower than its reference and that of Se, $2.45{\pm}1.17{\mu}g/dL$, was also lower than its average. On the other hand, those of Zn ($42.95{\pm}20.47{\mu}g/dL$) and Cu ($5.68{\pm}1.50{\mu}g/dL$) were flirty good. In case of Mn, urinary excretion, $0.31{\pm}0.09{\mu}g/dL$, was much greater than its reference. Urinary excretions of Mo ($7.48{\pm}2.95{\mu}g/dL$) and Cr ($1.37{\pm}0.41{\mu}g/dL$) were very higher compared to each reference. The results of this study revealed that Korean young adult women were considerably poor in Fe status, a bit inadequate in Se status, partly inadequate in Zn status, and flirty good in Cu, Mn, Mo and Cr status. However, there was a problem of excessive intakes of Mo and Cr. It, therefore, should be concerned to increase the intakes of Fe, Se and Zn but to decrease Mo and Cr consumption for young adult women.

Study on the Contents of Trace Elements in Foods (on the Trace Element Contents of Shellfish in Korean coastal Water) (식품중의 미량금속에 관한 연구조사 (연안 견류중의 중금속 함유량에 관하여))

  • 백덕우;권우창;원경풍;김준한;김오한;소유섭;김영주;박건상;성덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 1988
  • In 1987, the level of heavy metals were determined ina total of 200 samples of 9 species of shellfish of Korea. The samples were collected at the fish. markets by 10 Public Institute of Health. The samples were whelk (Buccinum striatiBBimum), oyster (Crassostrea gigas), ark shell(Tegillarca granesa), shartnecked clam (Venerupis semidecussta), hard clam (Meretrix lusoria), top shell (Turbo cornutus), abalone (Haliotis gigantea), ark shell (Scapharea broughtonii), sea-mussel (Mytilus conuscus gould), respectively. The levels of total mercury, lead, cadmium, arsenic, copper, zinc and manganese were determined. The total mercury levels were determined by mercury analyzer using the combustion gold amalgamation method. The arsenic level were determined by spectrophotometry using colorimetric sil ver diethyldithiocarbamate method after dry ash dige8tion of the samples with magnesium oxide and magnesium nitrate. The levels of other metals were determined by inductively coupled pluma spectrophotometry after wet digestion of the samples with nitric acid and su1furic acid. The results were summerized as follows; 1. The overallranges and mean(ppm) were; Hg, ND-O.221 (0.036); Pb, 0.05-1.51 (0.37); Cd, 0.02-1.86 (0.61); As, 0.5-3.97 (1.22); Cu, 0.14-54.16 (4.93); Zn, 7.40-207.17 (30.09); Mn, 0.13-s.72 (3.40). 2. The levels of all 6 metals were found to be below the maximum permissible Iimits set by the Japan lor mercury, the Netherland for lead the Hong Kong for cadmium. The Finland for Arsenic no statutory Iimits for Zn and Mn in shellfish in any countries. 3. The results show that all the 9 species of shellfish studied, none have accumulated levels dangerous enough to pose a health problem.roblem.

  • PDF

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.