• 제목/요약/키워드: Wet Process

Search Result 1,261, Processing Time 0.024 seconds

Process Characteristics of Atmospheric Pressure Plasma for Package Substrate Desmear Process (패키지 기판 디스미어 공정의 대기압 플라즈마 처리 특성)

  • Ryu, Sun-Joong
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.337-345
    • /
    • 2009
  • When the drill hole diameter for the package substrate is under $100{\mu}m$, the smear in the drill hole cannot be eliminated by wet desmear process only. We intended to change the substrate's hydrophobic characteristics to hydrophilic characteristics by adapting the atmospheric pressure plasma prior to the wet desmear process. Atmospheric pressure plasma process was made as the inline type equipment which is adequate for the package substrate's manufacturing process and remote DBD type electrodes were used for the equipment. As the result of atmospheric pressure plasma processing, the contact angle of the substrate was enhanced from 71 degree to 30 degree. Dielectric film thickness, drill hole diameter and surface roughness were measured to evaluated the characteristics of the wet desmear process in case of plasma processing and in case of none. By the measurement, it was analyzed that the process uniformity within the whole panel was largely enhanced. Also, it was verified that the smear in the drill hole was eliminated efficiently which was analyzed by the SEM image of the drill hole.

A Comparative Study of a Dielectric-Defined Process on AlGaAs/InGaAs/GaAs PHEMTs

  • Lim, Jong-Won;Ahn, Ho-Kyun;Ji, Hong-Gu;Chang, Woo-Jin;Mun, Jae-Kyoung;Kim, Hae-Cheon;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.304-311
    • /
    • 2005
  • We report on the fabrication of an AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) using a dielectric-defined process. This process was utilized to fabricate $0.12\;{\mu}m\;{\times}\;100 {\mu}m$ T-gate PHEMTs. A two-step etch process was performed to define the gate footprint in the $SiN_x$. The $SiN_x$ was etched either by dry etching alone or using a combination of wet and dry etching. The gate recessing was done in three steps: a wet etching for removal of the damaged surface layer, a dry etching for the narrow recess, and wet etching. A structure for the top of the T-gate consisting of a wide head part and a narrow lower layer part has been employed, taking advantage of the large cross-sectional area of the gate and its mechanically stable structure. From s-parameter data of up to 50 GHz, an extrapolated cut-off frequency of as high as 104 GHz was obtained. When comparing sample C (combination of wet and dry etching for the $SiN_x$) with sample A (dry etching for the $SiN_x$), we observed an 62.5% increase of the cut-off frequency. This is believed to be due to considerable decreases of the gate-source and gate-drain capacitances. This improvement in RF performance can be understood in terms of the decrease in parasitic capacitances, which is due to the use of the dielectric and the gate recess etching method.

  • PDF

A study on the development of high strength for acryl fiber during uniaxial stretching by swell-wet process (팽윤습열연신에 의한 아크릴섬유의 고강도화에 관한 연구)

  • Song, Kyoung-Hun;Lee, Mun-Soo
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.145-151
    • /
    • 1995
  • The stretching of synthetic fibers by hot dry process is very difficult, because these fibers have high glass transition temperature at above $150^{\circ}C$. But, we used a swell-wet stretching precess; the fibers are stretched in a swelling agent such as organic solvents at lower temperature. In this study, 100% acryl fibers were uniaxially stretched with free width at $70^{\circ}C$ by swell-wet process in organic solvents. The stretchability was estimated by stretching work. This work is concerned with stretching stress and strain, and initial modulus. We found that it is a good parameter for the estimatation of high strength to the acrylic fiber. The effects of stretching conditions on the molecular orientation for high strength and mechanical properties of PAN fibers were measured.

  • PDF

An Instance of Selecting Retention Chemicals Based on Simultaneous Analysis of Retention, Drainage and Formation of RDA (Retention and Drainage Analyzer) Sheets (보류, 탈수, 지합을 종합적으로 고려한 Retention and Drainage Analyzer (RDA) 활용 보류향상제의 선정사례)

  • Jeon, Chang-Hoon;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Young-Bum;Chung, Sung-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.7-13
    • /
    • 2010
  • KOptimization and control of wet-end process provide a key solution to improve paper quality and production efficiency at the same time. Wet-end of paper machine is to determine three important influencing factors of papermaking i.e., retention, drainage and formation. Good formation of paper could be made at the cost of deteriorated retention or drainage. In the same manner increase of retention aid could cause the bad formation of paper. It is very important to find a proper retention chemical which may satisfy one of three factors without the sacrifice of other two. Laboratory scale analyzing or screening chemical additives of wet-end was reported in this study based on RDA sheet molding. Different from the conventional test method, simultaneous consideration of three important wet-end properties could be made by RDA and consequently more reliable prediction of actual paper machine wet-end could be expected.

Weathering durability of biopolymerized shales and glacial tills

  • Amelian, Soroosh;Song, Chung R.;Kim, Yongrak;Lindemann, Mark;Bitar, Layal
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The glacial tills and shales in Midwestern states of the USA often show strength degradation after construction. They are often in need of applying soil modification techniques to remediate their strength degradation with weathering process. This study investigated the weathering durability of these natural soils and biopolymer treated soils by comparing direct shear test results for wet-dry and wet-freeze-thaw-dry cycled specimens. The tests showed that untreated glacial tills maintained only 62% and 50% initial shear strength after eight wet-dry cycles and eight wet-freeze-thaw-dry cycles, respectively. These untreated soils could not withstand by themselves after 16 weathering cycles. The same soils treated with 1.5% (by dry weight) food-grade Xanthan gum maintained 140% and 88% initial shear strength of untreated soils after 16 weathering cycles for wet-dry cycles and wet-freeze-thaw-dry cycles, respectively. The same soils treated with 1.5% (by dry weight) Gellan gum maintained 82% and 60% initial shear strength of untreated ones after 16 weathering cycles, respectively. Similar results were obtained for crushed shales, manifesting that the biopolymerization method may be adopted as a new eco-friendly method to enhance the weathering durability of these problematic soils of glacial tills and shales.

A Study on the Properties of Recycled Concrete Using Recycled Fine Aggregates with different Removal formulas of Powder In Aggregate (미분 제거방식이 다른 2종의 재생 잔골재가 콘크리트외 특성에 미치는 영향)

  • Lee Mun-Hwan;Lee Sea-Hyun;Shim Jong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.95-104
    • /
    • 2005
  • The research conducted to study the potential practicability of recycled aggregate concrete by analyzing the characteristics of concretes made of recycled quality aggregates produced by wet and dry process has found the following results. The air content of recycled aggregate concrete increased with increase of the substitut on rate due to mortar included while producing recycled aggregates. However, the concretes with aggregate produced by dry process had relatively low rate of increase in air content. The slump showed generally decreasing trend as the substitution rate of recycled aggregate increased regardless of the wet or dry process. It was assumed that the mortar particles remained in recycled aggregate absorbed the surplus hydration in concrete and decreased fluidity The compressive strength generally decreased as the substitution rate of recycled aggregate increased, however there was an increasing trend as well due to decreasing effect of water-cement ratio when the substitution rate of recycled aggregate reached 25, 50% after mix. This phenomena also appeared in early age, which meant that recycled aggregate concrete should not be retarded in setting when applied in the field. The tensile strength also reached the maximum when wet or dry recycled aggregate replaced with 25%. To conclude, recycled aggregates for concrete produced by wet or dry process are expected to demonstrate essential characteristics of concrete without significant decline in physical or dynamic quality when the substitution rate is below 25% although there are variations subject to water-cement ratio. However, slight differences are expected due to types of recycled aggregate and physical quality.

Preparation of Ultrafine Nickel Powders by Wet Reduction Process (습식 환원법에 의한 니켈 미분말의 제조)

  • Lee, Yoon-Bok;Moon, Young-Tae;Shin, Dong-Woo;Kim, Kwang-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.803-808
    • /
    • 2002
  • Nickel powders were prepared from nickel chloride solution by wet reduction process, and the size control of the particles was investigated with reactant concentration, dispersant agent, and the addition of ethanol as an organic solvent in NiCl$_2$ aqueous solution. The size of the particle decreased with the increase of nickel chloride concentration. Their average particle size were 1.9$\mu\textrm{m}$, 1.6$\mu\textrm{m}$ and $1.5\mu\textrm{m}$ with 0.5M, 0.8M and 1.0M of nickel chloride concentration respectively. The spherical particle was easily controlled by the addition of ethanol as an organic solvent. Especially, in 30 vol% of ethanol, the average particle size and specific surface area were about 0.2$\mu\textrm{m}$ and 8.98m$^2$/g, respectively.

Fabrication of Titanium Microchannels by using Ar+ Laser-assited Wet Etching (레이저 유도에칭을 이용한 티타늄 미세채널 제조)

  • 손승우;이민규;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.709-713
    • /
    • 2004
  • Characteristics of laser-assisted wet etching of titanium in phosphoric acid were investigated to examine the feasibility of this method for fabrication of high aspect ratio microchannels. Laser power, number of scans, etchant concentration, position of beam waist and scanning speed were taken into consideration as the major process parameters exerting the temperature distribution and the cross sectional profile of etched channels. Experimental results indicated that laser power influences on both etch width and depth while number of scans and scanning speed mainly affect on the etch depth. At a low etchant concentration, the cross sectional profile of an etched channel becomes a U-shape but it gradually turns into a V-shape as the concentration increases. On the other hand, surface of the laser beam focus with respect to the sample surface is found to be a key factor determining the bubble dynamics and thus the process stability. It is demonstrated that metallic microchannels with different cross sectional profiles can be fabricated by properly controlling the process parameters. Microchannels of aspect ratio up to 8 with the width and depth ranges of 8∼32 m and 50∼300 m, respectively, were fabricated.

  • PDF

Synthesis of potassium titanate by wet process (습식법에 의한 티탄산칼륨 섬유의 합성)

  • 강대갑;송종택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.278-283
    • /
    • 1995
  • The potassium titanate fibres were synthesized with wet process by the addition of KOH solution to the TiOz gel produced by the reaction between element titanium particles and $H_2O_2$ solution at $50^{\circ}C$. And then they were characterized by XRD, SEM and FT - IR. It was found that potassium titanate fibres were mainly affected by KOH/TiOz mole ratio, synthesis time and aging time in this wet process employed. For $KOH/TiO_2 = 1/1$, synthesizing time 24 hrs, aging time 24 hrs and calcination temperature of TEX>$900^{\circ}C$ for 1 hr, their products were mainly found to be potassium tetratitanate which had thin and long fibres in the range of 10 ~ 20 mm. As the synthesizing time increased and the amount of KOH decreased, potassium tetratitanate was converted into potassium hexatitanate. Also, the length of their fibres became short.

  • PDF

Fabrication and Photocatalytic Activity of TiO2 Hollow Structures using One-pot Wet Chemical Process (One-pot 습식화학공정을 이용한 TiO2 중공 구조체 제조 및 광촉매 활성 연구)

  • Lee, Duk-Hee;Park, Kyung-Soo;Park, Jae-Ryang;Lee, Chan-Gi
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2020
  • A facile one-pot wet chemical process to prepare pure anatase TiO2 hollow structures using ammonium hexafluorotitanate as a precursor is developed. By defining the formic acid ratio, we fabricate TiO2 hollow structures containing fluorine on the surface. The TiO2 hollow sphere is composed of an anatase phase containing fluorine by various analytical techniques. A possible formation mechanism for the obtained hollow samples by self-transformation and Ostwald ripening is proposed. The TiO2 hollow structures containing fluorine exhibits 1.2 - 2.7 times higher performance than their counterparts in photocatalytic activity. The enhanced photocatalytic activity of the TiO2 hollow structures is attributed to the combined effects of high crystallinity, specific surface area (62 ㎡g-1), and the advantage of surface fluorine ions (at 8%) having strong electron-withdrawing ability of the surface ≡ Ti-F groups reduces the recombination of photogenerated electrons and holes.