• Title/Summary/Keyword: Wet Bulb Temperature

Search Result 86, Processing Time 0.024 seconds

Evaluation of Thermal Environments during the Heat Waves of Summer 2013 in Busan Metropolitan Area (2013년 부산지역 폭염사례일의 열쾌적성 평가)

  • Kim, Young-Jun;Kim, Hyunsu;Kim, Yoo-Keun;Kim, Jin-Kuk;Kim, Yeon-Mai
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1929-1941
    • /
    • 2014
  • Now a days, frequency of abnormally high temperatures like heat wave by global warming and climate change is increasing constantly and the number of patient with heat related illness are jumping rapidly. In this study, we chose the case day for the heat wave in Busan area(Busan and Yangsan), 2013 which it was the most hottest year during 21th century. And then, we analysed the weather condition using automatic synoptic observing system(ASOS) data. Also, four indices, heat index(HI), wet bulb globe temperature(WBGT), Man-ENvironment heat EXchange model(MENEX)'s results like Physiological subjective temperature(PST), Physiological strain(PhS), were calculated to evaluate the thermal comfort and stress quantitatively. However, thermal comfort was different as the each station and thermal comfort index during same time. Busan's thermal indices (HI: hot, WBGT: sweltering, PST: very hot, PhS: very hot) indicated relatively higher than Yansan's (HI: very hot, WBGT: sweltering, PST: very hot, PhS: sweltering). It shows that Busan near coast is relatively more comfortable than Yangsan located in inland.

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Investigation on the Cooling Characteristics of a Regenerative Evaporation Water Cooler (재생증발식 수냉각기의 냉각성능 해석)

  • Choi Bong-Su;Hong Hi-Ki;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.393-401
    • /
    • 2006
  • The regenerative evaporation water cooler is devised and analysed in this study. The regenerative evaporation water cooler is composed of a sensible heat exchanger to cool the incoming air, followed by a latent heat exchanger to cool the water evaporatively with the cooled air flowing out of the sensible heat exchanger. By linearizing psychrometric characteristics, the heat and mass transfer in the regenerative evaporation water cooler is analyzed theoretically. The results show that the water can be cooled down even lower than the wet-bulb temperature of the inlet air. When the inlet air is $32^{\circ}C$ and 20% in relative humidity, and the inlet temperature of the water is $20^{\circ}C$, the regenerative evaporation water cooler provides a larger cooling capacity than the conventional evaporation water cooler if the effectiveness of the latent heat exchanger is higher than 0.6 and that of the sensible heat exchanger is higher than 0.5.

A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904 (1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.

Development of a Kiln Dry Schedule for Lindera erythrocarpa Grown in Hongsung, Chungnam Province, Korea (충남 홍성지역에서 자란 비목나무(Lindera erythrocarpa)의 열기건조스케쥴 개발)

  • Kang, Chun-Won;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Lindera erythrocarpa is a less utilized species in Korea although that it has straight stem and it grows up to 40 cm in diameter. A proper kiln-dry schedule is required in advance to utilize an unknown species. Terazwa's quick oven-dry method was used to find it and which was confirmed by drying 25 mm thick boards in a kiln. The average green moisture content and the average green specific gravity of Lindera erythrocarpa are 72.3% and 0.53, respectively. Prospective kiln-drying conditions obtained by Terazwa's quick oven-dry method are a initial dry-bulb temperature of $50^{\circ}C$, a initial wet-bulb depression of $4^{\circ}C$ and a final dry-bulb temperature of $75^{\circ}C$, which are in a good agreement with USDA FPL kiln-dry schedule of T5-D4. 25 mm thick boards dried in a kiln with T5-D4 kiln-dry schedule did not have any severe drying defects such as honycombing and warping. A severer kiln-dry schedule of T8-C5 was developed and applied to another kiln-drying run to confirm it.

Analysis of the Outdoor Design Conditions for Greenhouse Heating and Cooling Systems in Korea (온실의 냉난방시스템 설계용 외부기상조건 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to set the outdoor weather conditions to be applied to the design standard of the greenhouse heating and cooling system, outdoor air temperature and heating degree-hour for heating design, dry bulb temperature, wet bulb temperature and solar irradiance for cooling design were analyzed and presented. For every region in Korea, we used thirty years from 1981 to 2010 hourly weather data for analysis, which is the current standard of climatological normal provided by KMA. Since the use of standard weather data is limited, design weather conditions were obtained using the entire weather data for 30 years, and the average value of the entire data period was presented as a design standard. The design weather data with exceedance probability of 1, 2.5, and 5% were analyzed by the TAC method, and we presented the distribution map with exceedance probability of 1% for heating and 2.5% for cooling which are recommended by design standards. The changes of maximum heating load, seasonal heating load and maximum cooling load were examined by regions, exceedance probabilities, and setpoint temperatures. The proposed outdoor design conditions can be used not only directly for the greenhouse heating and cooling design, but also for the reinforcement of heating and cooling facilities and the establishment of energy saving measures. Recently, due to the climate change, sweltering heat in summer and abnormal temperature in winter are occurring frequently, so we need to analyze weather data periodically and revise the design standard at least every 10 years cycle.

High-temperature drying of Pinus densiflora and Pinus rigida dimension lumber (소나무와 리기다소나무 평소각재(平小角材)의 고온건조(高溫乾燥))

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-66
    • /
    • 1987
  • Korean red pine (Pinus densiflora S. et. Z.) and pitch pine(Pinus rigida Mill) $5{\times}10cm$ dimension lumber were dried in a kiln providing a cross-circulation velocity of 5 m/sec at dry-and wet-bulb temperatures of 116 and $71^{\circ}C$, followed by 3 hours at 91 and $85^{\circ}C$. Compared to dimension lumber dried lumber were as follows. 1. To dry to 10 percent moisture content, the high-temperatures schedule of Korean red pine and pitch pine lumber took less than one seventh the time required by the conventional kiln drying schedule. 2. High-temperature drying rate and conventional drying rate to 10 percent moisture content of Korean red pine lumber were 2.75 and 0.35%/hr, and those of pitch pine lumber were 3.38 and 0.46%/hr respectively. 3. Compared to lumber of both species on conventional schedule, moisture gradient of high-temperature lumber was greater. 4. Compared to lumber on conventional schedule, maximum surface checking of high-temperature lumber of both species was severer, and maximum end checking of high-temperature lumber of both species was similar to that of lumber on conventional schedule. 5. Compard to lumber on conventional schedule, Korean red pine lumber dried at high temperature showed more honeycombing, but pitch pine lumber dried at high-temperature showed significantly slighter honeycombing. 6. Compared to lumber on conventional schedule, the high-temperature lumber showed less warping lumber of both species. 7. Collapse and casehardening of Korean red pine and pitch pine lumber on both scheules were slight.

  • PDF

A Comparative Study on the Windchill Indices (체감온도이론의 비교 연구)

  • Park, Jeon-Hwan;Han, Uk;Park, Rae-Seol
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.676-682
    • /
    • 2002
  • The concept of sensible temperature in winter is an attempt to quantify the sensation of cold by dry-bulb temperature combined with wind speed. Siple-Passel’s windchill equivalent temperature originated in experiments that are not conformable to various human conditions. Therefore, many investigators have found the flaws which are listed. Steadman’s model is based on the concept of thermal equilibrium and more sound and more representative of human conditions. But no classifications exist for Steadman’s windchill equivalent temperature, yet. The JAG/TI-model which was developed by US and Canada is more accurate, easy to understand and reflects human beings by conducting experiments using human volunteers but didn't take into account solar radiation, wet condition and physical state of the individual. Because of individual differences in people’s age, activity, health, metabolic rate, etc., no experimental evidence exists to suggest whether Siple-Passel’s, Steadman’s and JAG/TI-model’s windchill equivalent temperature is more applicable to the majority of people. Therefore we need the windchill model which is best applicable to Korean Army.

Comparison of Thermal Environment and Biotope Area Rate according to Land Cover Types of Outside Space of School located in Chung-ju (충주시 학교외부공간 피복유형에 따른 온열환경 및 생태면적률 비교)

  • Ju, Jin-Hee;Ban, Jong-Heu;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1103-1108
    • /
    • 2010
  • This study was conducted to be used as basic data of environmental friendly construction planning by comparing and analyzing thermal environment, find particles and biotope area rate according to land cover types of outside space of schools located in Chung-ju. When meteorological factors were analyzed according to land cover types, for temperature planting area and paved area showed low-and high-temperature ranges, respectively, and relative humidity was negatively related with temperature as low-and high-temperature ranges corresponded to high-and low-humidity ranges, respectively. For Wet Bulb Globe Temperature Index (WBGT) by land cover types, it was observed to be artificial grass> bare land> natural grass. Find particles were different according to land cover types of playground with being bare land> artificial grass> natural grass in the order. Bare land playground, where there were artificial factors and no absorption of fine particles through stomata of leaves as a function of natural circulation, recorded the highest level of $39.8\;{\mu}g/m^3$ and the level was relatively higher compared to the levels by season in Chung-ju. Biotope area rate showed the order of M elementary school> K elementary school> C commercial high school. That was considered to be caused by the difference of land cover type of school playground accounting for a large part of a school.

Comparison of Thermal Environment between Inland and Coastal Cities in Gyeongbuk during the Heat Wave of 2018 - Comparison between Daegu and Pohang - (2018년 폭염 기간 동안 경북의 내륙과 해안 도시 간 열 환경 비교 - 대구와 포항의 비교 -)

  • Choo, Sung-Hyun;An, Eun-Ji;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.621-628
    • /
    • 2021
  • The characteristics of time changes in air temperature, DI (discomfort index) and WBGT (wet-bulb globe temperature) were investigated for inland city (daegu) and coastal city (pohang) of Gyeongbuk Province during the 2018 consecutive heat wave season. The time when the temperature dropped below 33℃ was around 19h in both regions. As such, the two regions were similar with respect to the time up to which the heatwave warning levels continued. However, the discomfort index (DI) was higher than 27 in Pohang. Most people feel unpleasant when an discomfort index of 27 or higher appears. The results indicated that Korea's night-time thermal environment during the summers is particularly poor in the southern coastal areas. WBGT began at 09:00 and lasted until 21:00, with a score of 31 or higher; this score, in principle, corresponded with the duration of outdoor activity in both regions. Therefore, it was found that outdoor work was at a level where all day long had to be stopped in both areas during the heat wave. Although time changes in temperature and WBGT were similar in both regions, Discomfort Index (DI) differed significantly. The difference refers to the fact that Pohang is strongly affected by the high heat capacity effect and the supply of water vapor from the sea.