• Title/Summary/Keyword: Well-network system

Search Result 2,219, Processing Time 0.029 seconds

Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks

  • Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.643-652
    • /
    • 2018
  • Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

Design of a Korean Character Vehicle License Plate Recognition System (퍼지 ARTMAP에 의한 한글 차량 번호판 인식 시스템 설계)

  • Xing, Xiong;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.262-266
    • /
    • 2010
  • Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.

A Design for a Zigbee Security System in the Customer Side Environment of Jeju Smart Grid Field Test (제주 스마트그리드 실증단지 수용가 환경에서 Zigbee 보안 체계 설계)

  • Lee, Myung-Hoon;Son, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1186-1192
    • /
    • 2012
  • In Jeju Smart Grid field test, Zigbee technology is being used as one of customer side solutions for AMI. Although Zigbee networks that provides effective connectivity and control among devices are advantages in ease of implementation and use, the data can be exposed to cyber attacks such as eavesdrop, unauthorized data dissemination and forgery. Currently authentication and confidentiality services are provided with the network and link keys generated based on public key pairs that are pre-installed in offline. However, the network is vulnerable once a hacker intrudes into a local network because operation and management policies for the generated keys are not well-established yet. In this paper, the vulnerability of the Zigbee security system in the customer side environment of Jeju Smart Grid field test is analyzed. Then, two-way authentication with the unique identifiers of devices and user-specific group management policies are proposed to resolve the vulnerability.

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

Design and Implementation of ARM based Network SoC Processor (ARM 기반의 네트워크용 SoC(System-on-a-chip) 프로세서의 설계 및 구현)

  • 박경철;박영원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.440-445
    • /
    • 2004
  • The design and implementation of a Network Processor using System-on-a-chip(SoC) technology is presented. The proposed network processor can handle several protocols as well as various types of traffics simultaneously. The proposed SoC consists of ARM processor core, ATM block, AAL processing block, Ethernet block and a scheduler. The scheduler guarantees QoS of the voice traffic and supports multiple AAL2 packet. The SoC is manufactured on the 0.35 micron fabrication line of HYNIX semiconductor, the total number of gates is about 312,000, for a maximum operating frequency of over to 50㎒.

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines (5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증)

  • Gu, Sewan;Kang, Sungkyu;Jeong, Wonhong;Moon, Hyungil;Yang, Hyunseok;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

A Study on the Relationship Between Welding Variables and Bead Width Using a Neural Network (신경회로망을 이용한 용접공정변수와 비드폭과의 상관관계에 관한 연구)

  • Kim, I. J.;Park, C. U.;Kim, I. S.;Park, S. Y.;Jeong, Y. J.;Lim, H.;Park, J. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.699-702
    • /
    • 2000
  • The automation and control of robotic welding process is a very complex assignment because the system is affected by a number of variables which are very difficult to determine or predict in practice. Not only the optimization of the robotic welding process is considered from the point of view of the time and the cost of manufacturing. as well as quality of the weldment. the human factors of the production and many other factors must taken into consideration. hi order to determine the optimal parameters of robotic welding process, it is necessary to build a computer model representing all parameters influencing the welding process as well as the mutual dependence between them. This paper presents an approach to modeling the robotic welding process in which all parameters affecting the welding process are included using a neural network. A detailed analysis of the simulation results has been carried out to evaluate the proposed neural network model.

  • PDF

Analysis of Wear Debris on the Lubricated Machine Surface by the Neural Network (Neural Network에 의한 기계윤활면의 마멸분 해석)

  • 박흥식
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.24-30
    • /
    • 1995
  • This paper was undertaken to recognize the pattern of the wear debris by neural network as a link for the development of diagnosis system for movable condition of the lubricated machine surface. The wear test was carried out under different experimental conditions using the wear test device was made in laboratory and wear testing specimen of the pin-on-disk type were rubbed in paraffine series base oil, by varying applied load, sliding distance and mating material. The neural network has been used to pattern recognition of four parameter (diameter, elongation, complex and contrast) of the wear debris and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by the neural network. The characteristic parameter of the large wear debris over a few micron size enlarged recognition ability.

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF