• Title/Summary/Keyword: Well logging

Search Result 128, Processing Time 0.035 seconds

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

Variation of the Physical Properties of Coal depending upon the Quality (탄질에 따른 석탄의 물성 변화)

  • Kwon, Byung Doo;Heo, Sik
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 1988
  • The purpose of this study is to collect basic data which are prerequisite for quantitative analysis of coal logging data. The study involves laboratory measurements of physical properties such as seismic velocities (P,S-waves), resitivity and density of domestic and imported foreign coals. The relationships between these properties were analyzed by using cross-plots. Correlation between the physical properties of coal and the results of chemical analysis (calorie, fixed carbon, ash, moisture, volatile matter and sulfur contents) was also studied to obtain ideas about coal quality analysis using logging data. Summarized results are as follows: 1. $V_P$ is exponentialy related to $V_S$. And the average value of $V_P$ is about l.8 times as large as $V_S$. 2. Since coal has very low density compared with surrounding sedimentary rocks, density logging is appeared to be the best method for identifying coal seams and evaluating their qualities. 3. For the case of domestic coals, the ash contents and calorie show a perfect inverse relationship. Since the density increases as increase of ash content with a well-defined functional form, the ash content of domestic coals can be estimated by density measurements. 4. Because of low ash content, low density and high resistivity, foreign coals and domestic lignites are easily distinguished from domestic coals.

  • PDF

Integrated approach using well data and seismic attributes for reservoir characterization

  • Kim Ji- Yeong;Lim Jong-Se;Shin Sung-Ryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.723-730
    • /
    • 2003
  • In general, well log and core data have been utilized for reservoir characterization. These well data can provide valuable information on reservoir properties with high vertical resolution at well locations. While the seismic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possible to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so that they should be extracted and used properly according to the purpose of study. The method to select the suitable seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties derived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, instantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, instantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute and well data is found out by the statistical regression method and estimates the reliable well data at a specific field location derived from only seismic attributes. For a future work in this study, the methodology should be checked an applicability of the real fields with more complex and various reservoir features.

  • PDF

Evaluation of Heat Production in Deep Boreholes by Gamma-ray Logging (감마선 검층자료를 이용한 국내 대심도 시추공 암반의 열생산율 평가)

  • Jo, Yeonguk;Kim, Myung Sun;Lee, Keun-Soo;Park, In Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Subsurface rock produces heat from the decay of radioactive isotopes in constituent minerals and gamma-ray emissions, of which the magnitude is dominated by the contents of the major radioactive isotopes (e.g., U, Th, and K). The heat production is generally calculated from the rock density and contents of major isotopes, which can be determined by mass spectrometry of drilled core samples or rock fragments. However, such methods are not easily applicable to deep boreholes because core samples recovered from depths of several hundred meters to a few kilometers are rarely available. A geophysical logging technique for boreholes is available where the U, Th, and K contents are measured from the gamma-ray spectrum. However, this technique requires the density to be measured separately, and the measurement depth of the equipment is still limited. As an alternative method, a normal gamma-ray logging tool was adopted to estimate the heat production from the total gamma activity, which is relatively easy to measure. This technical report introduces the development of the proposed method for evaluating the heat production of a granitic rock mass with domestic commercial borehole logging tools, as well as its application to a ~2 km deep borehole for verification.

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

An Interpretation of Hydrogeologic Structure Using Geophysical Data from Chungwon Area, Chungcheongbuk-Do (물리탐사자료를 이용한 수리지질구조 해석 -충청북도 청원지역)

  • 송성호;정형재;권병두
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2000
  • A set of geophysical survey results over an area in Bookil-myun, Chungwon-Gun, Chungcheongbuk-Do is presented; resistivity logging, d.c. sounding, dipole-dipole resistivity, and controlled-source magnetotelluric (CSMT) surveys. These surveys were chosen in this research for the estimation of the basement depth and the delineation of the hydrogeologic structure over the survey area. The results provide an optimal input to a hydrogeologic modeling analysis using the strategies built in GIS software. A total of 14 lines of dipole-dipole resistivity surveys, 25 stations of d.c. sounding and 6 stations of CSMT sounding were performed. In addition 10 boreholes were chosen for resistivity logging to correlate the logs to the surface data. A quantitative information on the hydrogeologic structure over the area is provided by synthesizing the results from various geophysical data and attribute layers are constructed by utilizing a GIS software Arc/ Info. The constructed layers match well to the hydrogeologic structures, which were outlined from the drilling data. The methodology tested and adopted in this study would be useful for providing a more reliable input to the hydrogeologic model setup.

  • PDF

Applicability of Geophyscal Well Logging in the Assessment of Seawater Intrusion (임해지역 해수침투 평가를 위한 물리검층의 적용성)

  • Lee Sang-Gyu;Hwang Sae-Ho;Hwang Hak-Su;Park In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.3
    • /
    • pp.101-111
    • /
    • 2000
  • In order to assess the seawater intrusion, induction, temperature and conductivity of fluid, and natural gamma logs were obtained in nine wells at the three study areas having different hydrogeologic characteristics. Besides surface geophysical exploration, supplementary geophysical well logs were carried out to understand the hydrogeological characteristics related to the seawater intrusion in the study areas. The geophysical well logs have been proved to increase the accuracy of interpretation of the surface geophyscial exploration's data for assessment of seawater intrusion, and to get the optimum depth for a long monitoring of groundwater. They, also, revealed that the identification of hydrogeological units for strata's porosity was able to be achieved and were illustrated the applicability of geophysical well logs monitoring. Finally, geophysical well logs are expected to play to get the more quantitative information of seawater infusion, if it is fully collaborated with a better method that is strata's resistivity determination with not relatively much effected by seawater within the drilled borehole and that is the porosity measurement with built on small diameter PVC casing.

  • PDF

Development of deep-seated geothermal energy in the Pohang area, Korea (경북 포항지역에서의 심부 지열수자원 개발 사례)

  • Song, Yoonho;Lee, Tae-Jong;Kim, Hyoung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.693-696
    • /
    • 2005
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-temperature geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating. Surface geologic and geophysical surveys including Landsat 1M image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT), and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. In 2004, two test wells of 1.1km and 1.5km depths have been drilled and various kinds of borehole survey including geophysical logging, pumping test, SP monitoring, core logging and sample analysis have followed. Temperature of geothermal water at the bottom of 1.5km borehole reached over $70^{\circ}C$ and the pumping test showed that the reservoir contained huge amount of geothermal water. Drilling for the production well of 2 km depth is on going. After test utilization and the feasibility study, geothermal water developed from the production well is going to be provided to nearby apartments.

  • PDF

Comparative Application of Various Machine Learning Techniques for Lithology Predictions (다양한 기계학습 기법의 암상예측 적용성 비교 분석)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.21-34
    • /
    • 2016
  • In the present study, we applied various machine learning techniques comparatively for prediction of subsurface structures based on multiple secondary information (i.e., well-logging data). The machine learning techniques employed in this study are Naive Bayes classification (NB), artificial neural network (ANN), support vector machine (SVM) and logistic regression classification (LR). As an alternative model, conventional hidden Markov model (HMM) and modified hidden Markov model (mHMM) are used where additional information of transition probability between primary properties is incorporated in the predictions. In the comparisons, 16 boreholes consisted with four different materials are synthesized, which show directional non-stationarity in upward and downward directions. Futhermore, two types of the secondary information that is statistically related to each material are generated. From the comparative analysis with various case studies, the accuracies of the techniques become degenerated with inclusion of additive errors and small amount of the training data. For HMM predictions, the conventional HMM shows the similar accuracies with the models that does not relies on transition probability. However, the mHMM consistently shows the highest prediction accuracy among the test cases, which can be attributed to the consideration of geological nature in the training of the model.