• Title/Summary/Keyword: Weldment Design

Search Result 54, Processing Time 0.021 seconds

Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding (보수용접 모사 방법에 따른 원자로 배관 이종금속 맞대기 용접부 응력 분포)

  • Lee, Hwee-Seung;Huh, Nam-Su;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process.

Temperature Analysis for Welding Part of Capstan Drum using Finite Element Method (유한요소법을 이용한 캡스턴 드럼의 용접부 온도해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.322-328
    • /
    • 2000
  • Welding means that metal parts are joined by melting (with or without a filler material) or that new material is added to a metal part by melting. Welding of metal parts is an important technology method in manufacturing processes of capstan drum for costal vessels. Thermal stresses due to the non-uniform temperature fields during welding influence both the fabrication and the use of the weldment. In the problem of this thermal effect, particularly it is a well known that analysis for temperature gradient, temperature distribution, and the like become consequence factors to a safety and a strength design. This paper analyzes the temperature distribution of welding part in capstan drum for the inshore and costal vessels using finite element method. At early stage of the cooling after welding processes, the abrupt temperature gradient has been shown in vicinity of the bottom face of welding part. Therefore it calculates the numerical value that can be applied to the optimal design of welding parts in the shapes for capstan drum.

  • PDF

Optimal Welding Design for FSW Based on Micro Strength by MSP Test (MSP시험의 미세강도에 의한 FSW 최적용접설계)

  • Yang, Sungmo;Kang, HeeYong;Jeong, Byeongho;Yu, Hyosun;Son, Indeok;Choi, Seungjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.425-431
    • /
    • 2016
  • The usage of Friction Stir Welding(FSW) technology has been increasing in order to reduce the weight in automobile industries. Previous studies that investigated on the FSW have focused on the aluminum alloy. In this study, Al6061-T6 alloy plates having 5 mm of thickness were welded under nine different conditions from three tool rotation speeds: 900, 1000 and 1100 rpm, and three feed rates: 270, 300 and 330 mm/min. Specimen size of Micro Shear Punch(MSP) test was $10{\times}10{\times}0.5mm$. The mechanical properties were evaluated by MSP test and Analysis of Variance (ANOVA). The specimens were classified by advancing side(AS), retreating side(RS), and center(C) of width of tool shoulder. The optimal welding condition of FSW based on micro strengh was obtained when the tool rotation speed was 1100 rpm and the feed rate was 300 mm/min. The maximum load measured AS, RS, and C in the weldment was measured 554.7 N, 642.9 N, and 579.2 N, respectively.

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.