• Title/Summary/Keyword: Welding quality

Search Result 912, Processing Time 0.027 seconds

Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery (원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화)

  • Chung, Ji Sun;Park, Soon Seo;Kim, Jee Ho;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.

Development of Welding Quality Inspection System for RV Sinking Seat (RV 차량용 싱킹 시트의 용접 품질 검사 시스템 개발)

  • Yun, Sang-Hwan;Kim, Han-Jong;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents a vision based autonomous inspection system for welding quality control of a RV sinking seat. In order to overcome the precision error that arises from a visible inspection by an operator in the manufacturing process of a RV sinking seat, the machine vision based welding quality control system is proposed. It consists of the CMOS camera and the NI vision system. The geometry of the welding bead, which is the welding quality criteria, is measured by using the captured image with a median filter applied on it. The image processing software for the system was developed using the NI LabVIEW software. The proposed welding quality inspection system for RV sinking seat was verified using experimentation.

A STUDY OF PROCESS PARAMETER MONITORING AND INTELLIGENT QUALITY ESTIMATION DURING RESISTANCE SPOT WELDING

  • Kim, Taehyung;Yongjun Cho;Kim, Yongjae;Sehun Rhee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.330-335
    • /
    • 2002
  • Resistance spot welding is one of the most widely used processes in sheet metal fabrication. Quality assurance of welding has been important to increase the productivity. In this study, weld quality estimation using primary circuit dynamic resistance applied to the in-process real-time systems. For quality estimation, factors relating to quality were extracted from the dynamic resistance, measured in the timer. The relationship between these factors and weld quality was determined through a artificial neural network model. This method has the advantage over the conventional one, such as obtaining the quality information without the use of extra devices.

  • PDF

A Study of Real-Time Weldability Estimation of Resistance Spot Welding using Fuzzy Algorithm (퍼지 알고리즘을 이용한 저항 점 용접의 실시간 품질 평가 기술 개발에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.76-85
    • /
    • 1998
  • The resistance spot welding process has been used for joining the sheet metal in automotive engineering. In the resistance spot welding, the weld quality is very important, because the quality of weld is one of the most important factors to the automobile quality. The size of he molten nugget has been utilized to estimate the weld quality. However, it is not easy to find the weld defects. For weldability estimation, we have to use the nondestructive method such as X-ray or ultrasonic inspection. But these kinds of approaches are not suitable for detecting the defects in real time. The purpose of this study is to develop the real time monitoring of the weld quality in the resistance spot welding. Obtained data were used to estimate weldability using fuzzy algorithm. It is sound that this monitoring and estimation system can be useful to improve the weld quality in the resistance spot welding process and it is possible to estimate the weldability in real time.

  • PDF

The Evaluation on Welding Qualities by Gun Press Force Patterns in the RSW (Resistance Spot Welding) Process using Servo Gun (서보건을 이용한 저항 점용접 공정에서의 가압력 패턴에 의한 용접품질 평가)

  • 박영제;조형석;박지환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.252-252
    • /
    • 2000
  • The Resistance Spot Welding (RSW) has been considered as an inherently safe and reliable method far joining metals, and has been widely employed, especially in automobile body assembly shops, as a manufacturing process. In recent years, the requirement for more sophisticated quality control procedures has considerably grown in the mass production industries. The object of the application of servo control to spot welding gun is the improvement of quality control in the spot welding, one of conventional industrial areas. The important factors affecting welding qualities (shear strength, nuggest size, indentation depth) are welding current, welding time, and gun press force. Welding current and welding time are controlled by welding timer. But, the conventional welding guns using compressed air are out of control in changing gun press forces in welding process. In this paper, a servo gun welding system having a AC servo motor and a PC control system is presented. The main object of this paper is to estimate the influence of gun press force changes in the welding process (press time -> welding time -> hold time) to welding qualities, and to evaluate welding qualities in real time, by recognizing the patterns of gun press forces changed in the welding process and comparing with the standard patterns.

  • PDF

REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION (음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가)

  • SAE-KYOO OH
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

Identification of Reaction Mechanism to Produce High Quality Weld During Submerged Arc Welding

  • Kim, Jeong-Han;Kang, Kyong-Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.242-253
    • /
    • 1993
  • The interpretation of the reaction mechanism is significant to produce the high quality welds and understand the welding processes. This investigation is important for the design of welding consumables and the selection of welding process parameters to develop the high quality welds. The objective of this study is to investigate the effect of electrochemical reactions on the transfer of alloy elements between slag and weld metal during submerged arc welding During submerged arc welding weld metal composition is shown to be controlled by two reaction mechanisms in four reaction zones. The responsible reaction mechanisms are thermochemical and electrochemical reactions. The possible reaction sites are the melted electrode tip, the detached droplet, the hot weld pool immediately below the moving electrode, and the cooling and solidifying weld pool behind the moving electrode. The possible reactions in submerged arc welding at different zones of the process is schematically shown in Figure 1.

  • PDF

Mold Quality Improvement through Overlay Welding (육성용접을 통한 금형 품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-57
    • /
    • 2020
  • The frequency of the manufacturing and modification of automotive press dies via overlay welding has recently increased, but the welding quality depends on the operator skills and the working conditions. Therefore, this study presents a way to improve the overlay welding quality regardless of the operator skills. Three welding conditions with different pre- and post-heating treatments were tested on some specimens; the weld surface quality was analyzed by examining the cutting face. The results demonstrated the best quality of the weld surface that was heated before and after the welding.

Real-Time Evaluation of Friction Weld Quality of Small-Type Hydraulic Valve Spool by Acoustic Emission (AE에 의한 소형 밸브스풀 마찰용접 품질의 실시간 평가)

  • 오세규;오정환;전태언;김경균;오명석
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding of special hydraulic valve spool of 16mm in diameter. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation periods of the welding and the tensile strength and other properties of the welded joints of $\phi16$ valve spool as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding.

  • PDF