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ABSTRACY

According as the friction welding has been increasingly
applied in manufacturing various machine components because of
its significant economic and technical advantages, one of the
important concerns is the reliable quality monitoring method for
a good weld quality with both joint strength and toughness in
the prucess of its production. However no reliable nondestructive
test method is available at present to determine the weld quality
particularly in process of production.

So this paper presents an experimental examination and
quantitative analysis for the real-time evaluation of friction weld
quality by acoustic emission, as a new approach which attempts
finally to develop an on-line quality monitoring system design
for friction welds using AE techniques.

As one of the important results, it was confirmed, through
this study, that AE techniques can be reliably applied to
evaluating the friction weld quality with 100% joint strength, as
the cumulative AE counts occurring during welding period were
quantitatively correlated with reliability at 95% confidence level
to the joint strength of welds,

Key Werds : Quality evatuation, Friction welding, Acoustic
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counts, Joint efficiency.

1. INTRODUCTION
In applying friction weiding process, one of the important
concerns is the reliable quality monitoring method for a good

weld strength in process of production. However, no reliable

nondestructive test method is available at present to monitor the
weld strength quantitatively in process™™ except the author, et

. 3.405) " " N
al.'s reports™ % . even though studies on ultrasonic detection of

weld strength were reported®” but no quantitative relationship

was drawn because of considerable scattering of the data,

ln this continued swdy since the former reports™ ¥, the
relationship between the weld swength and the measurable
acoustic emission total counts was analyzed quantitatively. This
was possible through relating the direct measurement and
analysis of AE counts to the strength (tensile strength) of
friction welds of medium carbon low alloy steel bars to
sulfurized free machining steel bars and stainless steel tubes to
low carbon steel tubes.

2. SPECIMENS AND PROCEDURES

The dimensions of welding workpieces and tension test
specimens are the same as those in Fig. 1. And the chemical
compositions and tensile strength of base metals are listed in
Table 1. The friction welding conditions (inertia type) used in
this study are revealed in Table 2 including the diameters of
warkpieces.

Table 1 Chemnical compositions and tensile strength of base
metals,

MATERIALS r CHIMICAL COMPOSITION {wt X} T.S*
sty [c P s mn er me wi 51 o
4140 0.38 0.75 0,04 - ~ 0.80 0.15 .20 }J113.4
117 0.17 1,00 0.04 0.08 - - - - 72.1

12114 10.35 0.85 0.04 0.26 0,15 - - - €5.9
1020 0.20 0.45 0,04 0.05 -~ -

3045.5.10.03 2.00 0.04 0.03 - 18.0 8.00 0’:75 73.5

Q1

* Unit: kof/mm2, each specimen with 0.635 mm R notch.

*Professor, Dept. of Mech. Engrg,, College of Engrg.,, Nat’'l Fi. Univ. of Pusan



Table 2 Welding conditions.

WATERIALS DI AMETER mbl'l OF [ INITIAL AXTAL INITIAL
COMBINATION INERTIA [ROTATING SPEED|PAESSURE ENERGY
(a1s1) 0, s (1, kgtm? p. kgt/mmi|e, kgfm

Bar-to-bar 0,118 1108

A5
4140-1117 9.525 Q.28 2}’—}4;0 12.7 ”6-—];71
0,472 883 — 2572 706-—1747 |

Bat-to-bar

4. "-12L14 9.525 0.236 1132—— 2822 12.7 169—1052
so-tube [0D 25.40
1020-304 85 13D 13,05} 0.472 7962904 8.2 167—2351

82.%5 % 0.50

101.60 ¥ .50 15.87
12.70 2 0.50 12,70 % 0.50

e

9.525 * 0.050,

AlS) 41401117
4140-12L14 25.40
88.902 0,50

#8.90 * 0.50

g
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Fig.] Welding workpieces and tension test specimens.

The AE transducer location diagram and the block diagram of
electronic components for the AE monitoring equipment including
the welding parameter-history measuring apparatus are given in
Fig. 2-(2) and (b)¥, respectively. A 22225 mmé acoustic
emission piezoelectric transducer (sensitivity-65 db) was tightly
mounted with tape on the jaw, using high vacuum grease on
the contacting surface: At such a location as shown in Fig.
2-(a), there was no thermal effect from the interface. The AE
equipment was ‘a standard commercial unit (Dunegan/ Endevco
Model 3000). As shown in Fig.2-(b), the band pass filter was
set to 100 through 300kHz to remove the background noise, and
AE signals were further amplified 35 db with a variabie
broadband amplifier (0-60db) after the preamplifier of 40 du®,
Thereby, the total system gain setting was 75 db in this study,
that is, counting each pulse that exceeded-75 dbv. About eighty
workpieces for each metal pair (AIS] 4140-1117, 4140-12L14,
1020-304) for welding and measuring AE counts were prepared.

Fig. 3¥ shows the typical history of welding parameters and AE
measurements in inertia friction welding. The total cumulative
AE counts (N, counts) at Zone A of the welding period between
welding start (Ws) and welding end (Wg) plus Zone B of the
cooling period between martensite formation start (Ms) and
finish (Mp) were used for rel-ating to the tensile strength (cr,
kgi/mm®) of welded joints, because the AE counts at Z(.)ne A
result primarily from the plastic deformation during welding and
those at Zone B primarily from the martensitic phase
transformation during cooling and then the cumulative total AE
counts at Zone A+B should be more intimately as a whole
correlated to the welded joint properties™™. The correlated
history graphs as those in Fig. 3 were made according 1o every
welding condition and used for analysis of each weldment and
AE measurement.
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Fig.2 (a) AE transducer location,

(b) Block diagram of AE monitoring equipment and
welding parameters measuring apparatus,
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Fig.3 History of welding parameters and AE measurement in

inertia friction welding.

3. RESULTS AND DISCUSSIONS
3.1 Effects of Total Upset on Weld Strength and AE Counts
In order to investigate the possibility of AE techniques
application to the quality evaluating of the continuous drive type
friction welding as well as the inertia (or flywheel) type friction
welding, the effects of total upset (U) or time (T) on cumulative
(N) should be
investigated, because the continuous drive friction welding is

AE counts relating w weld strength (or)
controlled in production primarily with the upsets {for heating
and upsetting) or welding times (for heating and upsetting} or
welding times (for heating and upsettinglunder the selected
rotational speed and pressures (for heating and upsetting) as
welding conditions™?.

It is known that the tensile stength of welded joint has
dependence upon the upset amount {or welding time)®, which is
correlated to the initial energym‘.

Each initial energy (E, kgf-m) was calculated by the following
formula” at the selected inertia (I, kgfmz) and rotating speed (V,
™mm) :

E = V17873

As the total upset (U) increases in Fig. 4, the tensile strength
(07) of welded joints varies parabolically, while the initial energy
(E) increase is related eventually to the total upset (U) increase

as an exponential function. These properties are very similar to
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Fig4 Correlation between cumulative total AR counts for Zone
A+B and total upset relating to initial energy and friction weld
strength of 9.525 mmo bar-to-bar welds of AlSI 4140 to 1117
steels ([=0.236 kgfm® p=12.7 kgf/mm’, V=937 to 3450 om,
E=116 w0 1572 kgfm).

Hasui, et al's report™ on continuous drive friction welding of
sulphurized free machining steel and Oh's” on continuous drive
friction welding of dissimilar materials (Si-Cr alloy steels to
high Ni-Cr alloy steels).

The experimental data points for or-U and E-U relationships

. were reliably fitted to the parabolic and exponential curves,

respectively by the least squares method, resulting in the mean
% errors of 423% for 6r-U curve and 9.47% for E-U curve
with high reliability at 95% confidence level. And such curves
were better fitted with smaller errors than any other else in
several trials for better curve fitting. It is .found in Fig. 4 that
the optimum total upset zone (OUZ) is 321 through 14.14 mm
by the E-U curve,

tensile strength with the joint efficiency more than 100%.

within which the welded joints have a

In the meantime, it was found that an increase of total upset
(U) results in an increasing cumulative total AE counts (N, for
Zone A+B) the

experimental data points were reliably fitted by the least squares

along a quadratic curve, to which all
method and the mean % error of the fitted curve was 14.1%, in
a case when the curve has also reliability at 95% confidence in
the lack of fit test™.

Thereby, as shown in Fig. 4, it was confirmed that, for
getting the weld strength with the joint efficiency more than
100% as indicated by 01-U curve and base metal strength line
in friction welding of AISI 4140 to 1117 steels {9.53 mm¢), not
only the optimum total upset zone (3.21 through 14.14 mm) can
be obtained at the same-optimum initial energy zone (OEZ,
2232 through 6985 kgfm) by the E-U curve, but also the
optimum AE zone (OAZ, 054X 10° through 2.66% 10° counts) can
be obtained at such an OUZ by the N-U curve at the same
time. This OAZ is coincident with the former report™®®



Thus, it seems that the weld strength with the joint efficiency
more than 100% in the continuous drive type friction welding as
well as the inertia type can be also and evaluated in process by
the cumulative total AE counts through total upset (but,
actually, by heating upset and forging upset in the case of

continuous type friction welding).

3.2 Effects of Welding Time on Weld Strength
and AE Counts

For such reason as mentioned in the section 3.1 and for the
additional verification for possibility of AE techniques application
to the continuous drive type friction welding, the effects of
welding time were also examined. The experimental results with
the same materials and welding conditions as those in Fig. 4
are shown in Fig, 5.

It is certain in Fig. 5 that the weld strength (o7, tensile
strength), cumulative total AE counts (N) and total upset (U)
are all correlated cubically to welding time (T). So that, their
experimental data points were fitted to each cubic curve, with
the result that the reliability is kept at 95 % confidence level,
t00. And then, at the same total upset zone (OUZ) as that in
Fig. 4, the optimum welding time zone (OUZ) is obtained by the
U-T curve as 1.69 through 3.18 sec, at which the OAZ of 056
x10° through 2.62x%10° counts as well as the weld strength
with the jaint efficiency more than 100 % can be obtained at
the same time through the N-T and 57-T curves, respectively.
This OAZ by' the welding time effects is also coincident with-
that in Fig.4.

Thus, it seems again that such cumulative total AE counts

within the OAZ do indicate the weld strength monitored with
the joint efficiency more than 100 % for friction welding of such

same materials pairs and same welding conditions, and that this
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Fig5 Correlation between cumulative total AE counts for Zone
A + B and welding time relating to total upset and friction weld-
strength 9.525mm¢  bar~to-bar welds of AISI 4140 o 1117
steels (I = 0.236 kgfm® , p = 127 kgf/mm?® |, V = 937 w 3450
om, E = 116 to 1572 kgfm)

non-destructive test method of friction weld quality monitoring
using AE techniques can be applied in continuous drive type
friction welding as well as flywheel type.

3.3 Relationship between Weld Strength and Total

AE Counts for Zone A+B

Fig6 shows the relationship between the inertia friction weld
strength and total AE counts for Zone A+B of friction welded
joints of 93 mm¢ bars AISI 4140 to AISI 1117 steels. For
comparison the cases of the weld of 25. 4dmm¢ (3. 8mm wali}
tubes AISI 1020 to AISI 304 stainless steels and 9.3 mm¢ bars
AISI 4140 to AISI 12L14 steels are also given in Fig6
Regarding to the optimum AE zone (OAZ) for each weld, the
OAZ-1 in the case of the weld of AISI 4140 to AISI 1117 is the
widest (0. 5 x 10° through 2. 5 X 10%), because of more carbon
contents in them and also the martensite~forming-stabilizer Cr
content in AISI 4140 resulting in their excellent hardenability.
This OAZ-1 is well coincident with the GAZ-1 in the former
reports™. This means that those have a high reliability.

In the case of welding AISI 1020 w0 AISI 304 stainless steel
tubes, they have especially the area (a) where strength is
dropped and total AE count are very low even though they
were welded at high speed level (2968 through 2984 rpm).
Those welds were fractured on the boundary area between HAZ
and base metal. This must be the dangerous weak points in the
view of welding strength. So that, the OAZ~2(1.2%10° through
25%10° counts) in Fig4 should be compensated to the AE
range of C-OAZ-212x10° through 19%10° counts) for
attaining to the GWZ (good welding zone with the joint
efficiency more than 100%) for safety quality monitoring and for
practical use.
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Fig.6 Relationship between inertia friction weld strength and total
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In the case of 4140-to-12L14 welds in Fig.6, they also have
the dropped strength and lowered total AE counts areas (b) and
(c) much scattered from the fitted curve exceptionally. The
welds in the area (b) welded at semi-high speed level (1805
through 2313 rpm) were fractured on HAZ boundary surface
with macro~ or micro-crack (as shown in Fig.7). And also the
welds in the area (c) welded at high speed level were fractured
on the HAZ and base metal boundary surface with visible crack,
and with macro or micro crack (as shown in Fig.7 (d} and {(e)
observed by EPMA X-ray these
defects, the OAZ-3 of AE counts with the range of 190x10°
through 290x10° counts should be compensated to the
C-~OAZ-3 with the range of 215X 10" though 2.90% 10" counts

for safety quality monitoring and for practical use, in Fig6.

images). To avoid weld

(a9} Soom (&) am

(a) Non-welded periphery of 4140-1117 joint welded at the
lowest speet lever (937rpm).

(b} Crack and center defects of 4140-1117 joint welded at the
fowest speed lever (337rpm).

{c) Macro crack on HAZ boundary surface of 4140-12L14 joint
welded at somi-high speed level (2313rpm).

(d) Macro crack at boundary area of HAZ and base metal of
4140-12L14 joint welded at high speed level (2617rpm).
(EPMA X-~-ray image, BEHCOMPQ), 20 kV).

(e) Micro crack kiscontinuities on HAZ boundary of 4140-12L.14
joint welded at high speed level (2617rpm). (EPMA X-ray
image, SE, 20 kV).

Weiding conditions:[=0.236kgf -, p=127kgf/mm’, n=as above.

Fig.7 Macro and micro photos, and EPMA X-ray images for the
discontinuities of the intertia welded joints welded at different

speed levels.

The empirical equations of ¢1-N for 4140-1117, 1020-304 and
4140-12L14 welds are given as the following, computed by the
polynomial regression analysis, calculating the equation adequacy
by the error analysis™
For 4140-10-1117 (953 mm dia.) welds:
a1 = ~15454X 1079N® - 23807% 10°2N? + 6,381 X 10N + 71.39,
(0320x10° S N & 7447x10°, Bq. adeq.

P mean % ervor 4.24) (1)

For 1020-t0-304 (254 mme, 3.18mm wall tubes) welds:
o = ~147T9X 102N’ + 54917x10°N + 1994,
0515x10° £ N £ 2649x10°% Eq. adeq.

' : mean % error 8.02)
For 4140 12L14 (9.53 mm dia.) welds:
o1 = 1.9987X107®N? - 21.274x 107*N* + 66801 X 10N + 4.12,
(0.442x10° & N S 5041x10° Eq. adeq.

: mean % error 9.34)

2)

3)

Thus, equations of the o1-N
relationship for the welded joints(AISI 41401117, 1020-304 and
4140-12L14), the general empinical equation form can be modeled

by the above empirical

as the following cubic (a#0) or parabolic {(a=0) equation
depending on materials:
o1 =aN® + bN? + ¢N + d @

3.4 Comparison between Empirical and Calculated

Equations and 95% Confidence Tests

Fig.8 shows the comparison between the calculated cquations™
and the empirical equations m & @ Such  caleulated
equations derived from the combination of cmpirical o - and
N-n are as follows®, '
4140-1117 g1 = -73194 x

10 M . 4655

0283x10° < N 5 7.356%10°, Mcan % Diff. 0.6%)

10 NS o2

)

1020-304 or = -13368  x 10%W'YTN 73813 x
10°N530,18

0895x10° = N 5 2484 x10%, Mean % Diff. 202%)  (6)

The maximum mean % difference is only 2.06%, showing a high
reliability.
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Fig.8Comparison between calculated and empirical cquations for

friction weld strength versus total AE counts of 9.535 mm ¢
bar~to-bar(AIS] 4140 to 1117) and 254 mm¢ (3.185mm wall)
tube-to-bube (AISI 1020 to 304S.5) welds.



Table 3 ANOVA table for testing the lack of fit on the
empirical (01.-N, % difference 0.60) equation models of
4140-1117 welds.

DIGREE OF,
SOURCE SN OF S UARES FRECOON IHEAN SCUARE ¥ = RATIOD
RESIDUAL  |6.2478 x 1012 14
PURE ERROR(9.0123 x 1011 4 2.2531 x 1981
LAk of FrTis.dees x 1012 | a0 3.3466 x 1031 2.37 |
REMARXS FROM F-TASLE, l“o. 4, 0.05" 5.96 (95% MFIQENC!)J

For their 95% confidence examination, in the case of
4140~1117 welds, the residual sum of squares for the weld
strength are computed statistically, and the ANOVA table for
testing the lack of fit is calculated as in Table 3. The calculated
F-ratios for the lack of fit for both the empirical equations at
full range and OAZ-1 of AL and the calculated equation are
144, 013 and 013 which are much smaller than the
corresponding values of 3.09, 19.36 and 19.36, respectively from
the F-table at 95 percent confidence level. This analysis
suggests that not only there is no great danger of lack of fit
between all the postulated models and the experimental data in
this study, but also it scems possible to evaluate the weld
strength  quantitatively in real time during the process of
production by the acoustic emission techniques™*® more

reliably than by the conventional methods™.

4. CONCLUSIONS
The results- obtained in the study on Development of
Real-Time Quality Evaluation of Friction Welding by Acoustic

Emission are as follows:

(1) The weld strength can be quantitatively and usefully
evaluated or controlled in real time of process by using AE
lechniﬁues because it was confirmed experimentally and
quantitatively that the friction weld strength and the total
acoustic emission counts have the correlation between them, and
the relationship model is expressed as
ar =aN® + bN? + cN + d, (depending on materials, a=0),
whose maximum mean % difference from the calculated model
(o) is 206%, and which has a high reliability, and can be
used for inprocess real-time evaluating or monitoring of friction
weld strength as .a nondestructive evaluating method using AE
techniques.

(2) It was confirmed again statistically by error analysis and
lack-of-fit testing that the empirical equations for the
relationship between the weld strength and the total AE counts
computed by the regression analysis using the least squares
method have also a reliability at 95% confidence level.
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APPENDICES

- Real-Time Evaluation of Automatic Production Quality Control
for Friction Welding Machine : Report 2

Abstract

Both in-process quality control and high reliability of the weld is one of the major concerns in
applying friction welding to the economical and qualified mass-production. No reliable nonde-
structive monitoring method is available at present to determine the real-time evaluation of auto-
matic production quality control for friction welding machine.

This paper, so that, presents the experimental examinations and statistical quantitative analysis
of the correlation between the initial cumulative counts of acoustic emission(AE) occurring
during plastic deformation period of the welding and the tensile strength of the welded joints as
well as the various welding variables, as a new approach which attempts finally to develop an
on-line (or real-time) quality monitoring system and a program for the process of real-time
friction welding quality evaluation by initial AE cumulative counts.

As one of the important results, it was well confirmed that the initial AE cumulative counts
were quantitatively and cubically correlated with reliability of 95% confidence level to the joint
strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique
using initial AE counts can be reliably applied to real-time strength evaluation of the welded
joints, and that such a program of the system was well developed resulting in practical possib-

ility of real-time quality control more than 100% joint efficiency showing good weld with ne
micro-structural defects.

Table 1 Chemical composition and tensile strength of base metals

Materials Chemical composition (wt %) T.S*
) C  Mn P s Pb  ‘Cr Mo Ni Si or
SCM4 0. 38 0.75 0.04 — - 0. 80 0.15 —_ 0.20 ! 113.4
SUM31 0.7  1.00 0.04 0.08 — - - - - 72.0
SUM24L 0.15 0.8 0.0¢ 02 015 — @ — - — ] 66.9
Table 2 Friction welding conditions (Inertia type)
Materials Diameter Moment of Initial Axial Initial
combination D, mm inertia rotating speed pressure energy
I, kgfm? n, rpm p, kgf/mm? E, kgfm
Bar-to-bar 9.525 0.118 1136 12.7 85
4-SUM.
SCM4-SUMS! 0.236 937~2450 116~1572
0.472 883~2572 206~1747
o ol 9.525 0.236 1132~2822 12.7 169~1052

Table 3 ANOVA table for testing the lack of fit on the empirical Ni—n equation (M%E=13.09) of
SCM4-SUM31 welds

Source Sum of Degree of Mean square F-ratio
squares freedom

Residual 7. 4606 X 10" 38

Pure error 7.9962 X 10" 8 9. 9953 X 10°

Lack of fit 6. 6610 10" 30 2.2203 %10 2.22

Remarks

From F-table: F30,8,0.05=3.08>2.22 (95% confidence)

._9_
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- Real-Time Evaluation of Friction Welding Quality of Small-Type
Hydraulic Valve Spool by Acoustic Emission : Report 3

Abstract

Both in-process quality control and high reliability of the weld is one of the major concerns in
applying friction welding to the economical and qualified mass-production. No reliable nondestructive
monitoring method is available at present to determine the real-time evaluation of automatic production
quality control for friction welding of special hydraulic valve spool of 16mm in diameter.

This paper, so that, presents the experimental examinations and statistical quantitative analysis of
the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic
deformation periods of the welding and the tensile strength and other properties of the welded joints
of ¢16 valve spool as well as the various welding variables, as a new approach which attempts finally
to develop real-time quality monitoring system for friction welding.

Table 1 Chemical composition of SCM415(wt% )
Material C[Si {Mn|] P | SINi|Cr|Mo
SCM415 10.16 { 0.25] 0.73 {0.009]0.007] — [099]017

Table 2 Mechanical properties of SCM415

Tensile
Material Strength Elongation Reduction Hardness Heat
olkgf/mm?) e(%) of Area ¢(%) H, Treat.
863C
50.5 32 58 85 Annealed
SCM415 850C
Oil-Quenched,
85 16 40 300 200
Tempered
Air Cooling
Table 3 AE instrumentation and operating parameters
: PZ Type R-15
Transducers 150kHz resonance frequency
Model 1220A _
Pre-amplifier 40dB fixed gain !
100-300kHz filter !
Post-amplifier 40dB gain '
Threshold 1.0V '
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— Study on Optimization of Friction Welding of Cr-Mo Steels and Evaluation
of Weld Strength by Acoustic Emission : Report 4
Fig.1, Table 1, Fig.2

— A Study on Optimization of Bar-to-Bar Similar Friction Welding of
Hydraulic Valve Spool Steels and the Fatigue Strength Properties and its
AE Evaluation : Report 5

Table 1, Fig.2

— A Study on Optimization of Bar-to-Bar Dissimilar Friction Welding of
Hydraulic Valve Spool Steels and the Fatigue Strength Properties and its
AE Evaluation : Report 6

Table 1, Fig.2

~ A Study on Optimization of Tube-to-Bar Dissimilar Friction Welding of
Hydraulic Valve Spool Steels and the Fatigue Strength Properties and its
AFE Evaluation : Report 7
Fig.1, Table 1, Fig.2
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Table 1 FRW cond. of Data-Base System for Similar or Dissimilar Welding

Standardization of Various Hydraulic (/ Pneumatic) Valve Spools

Heating i Upsetting | Heating | Upsetting | Rotating
Material Pressure i Puressure Time Time speed
P : P2 T T n
Similar | Dia. (kg/mm®) | (kg/mm®) | (sec) (sec) {rpm)
SCM415 | 168 9 ! 15 1~7 4 2000
312 4 i 8 18~34 4 1600
SACM645 ;
24 7 ] 10 9~11 5 2000
312 5 P10 8~20 4 1600
SNCM220 :
24 | bar-to-bar 7, 10 6~10 5 2000
312 4 : 8 18~34 4 1600
SCM435 ;
24 7 010 8~12 5 2000
31.2 4 : 8 19~25 4 1600
SCM415
24 7 10 6~9 5 2000
SACM645{ 36 5 10 10~24 4 1600
SNCM220} 36 5 10 3~20 4 1600
tube-to-bar
SCM435 36 5 10 4~20 4 1600
SCM415 36 5 . 10 15~22 4 1600
Heating Upsetting | Heating | Upsetting | Rotating
Material Pressure | Puressure Time Time speed
P P Th T2 n
Dissimilar | Dia. (kgy/mm?) ! (kgy/mm®) (sec) (sec) (rpm)
SCM415x | 312 5 | 10 9~15 6 1600
SNCM220 | 24 7 P10 4~7 5 2000
SCM415%x | 312 5 10 9~15 6 1600
SACM645 | 24 7 10 3~5 5 2000
bar-to—bar
SCM435x | 31.2 5 10 9~15 6 1600
SNCM220 | 24 7 10 5~8 5 2000
SCM43sx | 31.2 5 10 9~15 6 1600
SNCM645 | 24 7 10 3~6 5 2000
SCMA415X
SNCM220 36 6 12 10~24 6 1600
SCM415X
SNCM645 36 N 6 12 3~20 6 1600
-10—
SCM435x
SNCM220 36 6 12 4~20 6 1600
SCM435 X
SNCM645 36 6 12 15~22 6 1600
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Fig.2 Block diagram of Real-Time Quality Evaluation System Process Chart
for Similar or Dissimilar Friction Welding of Various Hydraulic
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