• Title/Summary/Keyword: Welding processing

Search Result 602, Processing Time 0.025 seconds

A Study on Development of the Optimization Algorithms to Find the Seam Tracking (용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구)

  • Jin, Byeong-Ju;Lee, Jong-Pyo;Park, Min-Ho;Kim, Do-Hyeong;Wu, Qian-Qian;Kim, Il-Soo;Son, Joon-Sik
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

A Study on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor (레이져 변위센서를 이용한 용접선 자동추적에 관한 연구(2))

  • 양상민;조택동;전진환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.729-733
    • /
    • 1997
  • Due to the variety of disturbance, it is not ease to accomplish the in-process detection of weld line with non-contact sensor. To get around this difficulties problem develop an automatic seam tracking weld system, the reliable signal processing algorithm has been recommanded. In this research, laser displacement sensor is applied as a seam finder in the automatic tracking system. The sensor is controlled by a dc servo motor which is mounted at X-Y moving table. X-Y moving table manipulated by an ac servo motor controls the position and velocity of the welding torch. First, X-Y table moves to Y-axis to search the welding joint feature before starting the welding, and welding joint is from the scanning data and weighting factor for each other. Second, weld line is determined using proposed signal processing algorithm during welding process. Form the experimental results, we could see the possibility that laser displacement sensor with procesed algorithm can be used as a seam finder in welding process under the severe noise (spatter,arc light etc.) condition

  • PDF

A Study on Characteristics of Plasma Emission Signals with Welding Conditions in CO2 Laser (CO2 레이저용접시 용접조건에 따른 플라즈마 방사신호의 특성연구)

  • Kim, Jong-Do;Lee, Chang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1256-1261
    • /
    • 2009
  • Today, implementation of the defect detection in laser welding has been researched for a long time, but most studies have been made around thin plate within $1{\sim}3mm^t$. Therefore, this study was measured and analyzed light emission signals of the induced plasma in $CO_2$ laser lap welding of $6mm^t$ Zn primer-coated steel, and based on this analysis, research made an investigation into possibility of monitoring in thick plate welding. It was been analyzing the measured signals by RMS and FFT processing, as a results, we were able to confirm definite difference of two signals between humping bead and sound bead. Thus, possibility of real time monitoring in $CO_2$ laser lap welding verified experimentally.

The Multipass Joint Tracking System by Vision Sensor (비전센서를 이용한 다층 용접선 추적 시스템)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-23
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. However, in this paper, multipass tracking more than single pass tracking is performed by conventional seam tracking algorithm and developed one. And tracking performances of two algorithm are compared in multipass tracking. As the result, tracking performance in multi-pass welding shows superior conventional seam tracking algorithm to developed one.

The 3-layer laser welding method of zinc coated steel for car body (자동차 차체용 아연도금강판의 3겹 레이저용접 방법)

  • Lee, Hui-Beom;Jang, In-Seong;Jeong, Dae-Hyeon;O, Gwang-Min;Sim, Min-Seon
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.35-40
    • /
    • 2006
  • Laser welding is high power density welding method which is higher speed and productivity, lower thermal deformation, without material restrictions for car body welding. But, in case of zinc coated sheet metal welding, the gap is needed $0.1{\sim}0.2mm$ to avoid weld bead blowup. This paper describe that it used dimple and pressure roller tool to improve laser welding quality for 3-layer zinc coated sheet metal.

  • PDF

Evaluation of Mechanical Characteristic and Investigation on Optimum Condition in Friction Stir Processing for 5456-H116 Al Alloy (알루미늄 5456-H116 합금에 대하여 최적 마찰교반 프로세싱 조건 규명 및 기계적 특성 평가)

  • Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • Friction stir welding(FSW) was developed as a new solid state welding technique by The Welding Institute (TWI). On the basis of FSW, a new processing technique, friction stir processing (FSP), has recently been developed. FSP has been applied to cast aluminum alloy to modify the microstructure to enhance mechanical characteristic. FSP is a new solid state processing technique for microstructural modification in metallic materials. FSP has been applied to aluminum alloy to modify the microstructure to enhance mechanical characteristic. In this study, we investigated optimum condition friction stir processing with the evaluation of mechanical characteristic for 5456-H116 Al alloy. The mechanical characteristics of base metal similar with in 15 mm/min, 250 RPM with full screw probe. This condition is concluded that optimum friction stir processing condition. The result of this investigation will be able to application for repair of welding part for aluminum ship.

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

Recent Research & Development Trend on Friction Stir Welding and Friction Stir Processing (마찰교반용접(FSW) 및 마찰교반처리(FSP)의 최신 연구개발 동향)

  • Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.26-29
    • /
    • 2013
  • The latest research & development trend on friction stir welding and friction stir processing technologies presented in the international symposium, 'Friction Stir Welding & Processing VII'. Papers and presentations about high temperature materials such as advanced high strength steel, stainless steel and titanum alloy shoot up this year. Papers on modeling of metal flow and control of process parameters also increased. The FSP technologies for manufacturing of carbon materials reinforced metal matrix composites were reported, too.

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF