• Title/Summary/Keyword: Welding process

Search Result 2,198, Processing Time 0.027 seconds

Development of Mash-Seam Welding Process by Flat Electrode Continuous Welding (평판전극 연속타점에 의한 매쉬심 용접기법 개발)

  • 조상명;조호재
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2003
  • Resistance welding processes are widely used in automotive applications. In particular, Mash-Seam resistance welding is typically used in Tailored Blank process. If spot welds are changed to a continuous weld, it's easy to reduce noise and to be more stable in cars. A arc welding, laser welding, seam welding using wheel electrode are available to make continuous welds on a car body, but they demand operator with advanced skills and expensive cost to develop. Therefore, flat electrode continuous mash-seam resistance welding process has been used to improve the weak points in currently available system in lap seam welding. This developed process has much more strength and air tightability, and also has much better plastic workability than laser welding. Moreover, commercial RSW machine can be readily used in this welding process.

Development of Seam Seal Welding System for Semiconductor Package (반도체 Package용 Seam Seal Welding System 개발)

  • 이우영;진경복;오장환;김경수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.21-24
    • /
    • 2003
  • Seam seal welding on the semiconductor package is a process for sealing the packages of semi-conductors, crystal parts, saw filters and oscillators with lid plate by seam welding. This paper presents the development process of automatic seam seal welding system. In this process, the process algorithm, high precision welding current control, design of welding head, high speed and high precision feeding mechanism and user interface process control program technologies are included.

  • PDF

Characteristics of manual welding process on carbon steel repair welding using buttering bead (버터링 비드를 이용한 탄소강 보수용접에서 수동 용접 프로세스의 특성)

  • Song, Geun-Ho;Kim, In-Su;Lee, Myeong-Yeol
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.42-44
    • /
    • 2007
  • Methods of repair welding are different to production welding for welding position, welding process, welding power source, heating methods. This study investigated proper the welding process used the welding process SMAW and GTAW in the weldment of inconel filler metals. Mechanical test showed that SMAW and GTAW process had higher mechanical properties than those of material specification. Both SMAW and GTAW welding process can appy the repair welding. In comparison, GTAW welding process had more higher mechanical properties in the weldment.

  • PDF

A Study on an Optimization of Welding Process Parameters by using an Analytic Solution for the Welding Angular Distortion (용접 각 변형량 해석해를 이용한 용접 공정변수 최적화에 관한 연구)

  • 이세환
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.42-48
    • /
    • 2003
  • Welding distortion is a current issue in many industrial parts, especially for heavy industry such as shipbuilding, plant industry. The welding process has many processing parameters influencing welding angular distortion such as heat input power, welding speed, gas flow rate, plate thickness and the welded material properties, etc. In this work, the conventional local minimization concept was applied to find a set of optimum welding process parameters, consisted of welding speed, plate thickness and heat input, for a minimum angular distortion. An analytic solution for welding angular distortion, which is based on laminated plate theory, was also applied to investigate and optimize the welding process parameters. The optimized process parameters and the angular distortion for various parametric conditions could be easily found by using the local minimum concept.

Decision-Making Method of Priority Welding Process (용접법의 우선순위 결정 방법)

  • Kim, Jong-Do;Kim, Kwang-heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • Nowadays, several welding processes are generally used to join parts together, and the materials are generally steel, aluminum, copper, stainless steel, and other difficult-to-weld materials. If a proper welding process is chosen, it is helpful for welding parts. However, there is no desirable technique for appropriately deciding on the welding process in the industry. Therefore, an appropriate method of selecting a welding process is needed for the novice worker in the industry. In this sense, a new analytic network process (ANP) technique is used for effective decision making in welding. By considering several criteria in ANP, a selection method is suggested to decide on the proper welding process. In the study, several criteria were considered for the proper welding of parts. By considering a matrix of prior interdependence effects among various welding processes, a decision-making method based on an ANP is accomplished using a weighting matrix, which is supposed to select an appropriate welding process. In addition, for appropriate decision criteria of the welding process, several factors, such as material, shape, precision, economics, and equipment, are used to accomplish the ANP algorithm. Moreover, the final weighting matrix is calculated following its ANP strategy. Furthermore, this decision-making technique is applied to both stainless razor spot joining and thick steel pipe joining. The results show its reliability and practicality, and the novice engineer and manager can use this technique to determine the best welding process.

The Evaluation on Welding Qualities by Gun Press Force Patterns in the RSW (Resistance Spot Welding) Process using Servo Gun (서보건을 이용한 저항 점용접 공정에서의 가압력 패턴에 의한 용접품질 평가)

  • 박영제;조형석;박지환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.252-252
    • /
    • 2000
  • The Resistance Spot Welding (RSW) has been considered as an inherently safe and reliable method far joining metals, and has been widely employed, especially in automobile body assembly shops, as a manufacturing process. In recent years, the requirement for more sophisticated quality control procedures has considerably grown in the mass production industries. The object of the application of servo control to spot welding gun is the improvement of quality control in the spot welding, one of conventional industrial areas. The important factors affecting welding qualities (shear strength, nuggest size, indentation depth) are welding current, welding time, and gun press force. Welding current and welding time are controlled by welding timer. But, the conventional welding guns using compressed air are out of control in changing gun press forces in welding process. In this paper, a servo gun welding system having a AC servo motor and a PC control system is presented. The main object of this paper is to estimate the influence of gun press force changes in the welding process (press time -> welding time -> hold time) to welding qualities, and to evaluate welding qualities in real time, by recognizing the patterns of gun press forces changed in the welding process and comparing with the standard patterns.

  • PDF

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

A Study on the Prediction and Control of Welding Deformation of the BRACKET TILT in Automotive Parts (I) - Experimental Examination- (자동차 부품 BRACKET TILT의 용접변형 예측 및 제어에 관한 연구 (I) - 실험적 검토-)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.97-103
    • /
    • 1998
  • The bracket tilt among automobile parts is weld parts which construct the column assembly bracket tilt of equipments and accurate dimension after welding is more essential than weldment strength. By the way, it is insufficient that systematic study about this parts which have an importance on welding deformation. The reason is that welding deformation is complex problem with shape, size, material of parts and welding sequence, conditions etc. For reduction and removal of welding deformation, therefore, it is necessary that the security of welding deformation data and systematic examination about equipment, costs, work environment, manufacturing process etc. It is all the better that the prediction of welding deformation using simulation of welding process by FEA is supplemented. In this study, the countermeasure for this welding deformation of bracket tilt is brought up through experimental inspection before the choice of the optimum welding conditions with minimum welding deformation by simulation of welding process.

  • PDF

Resistance Spot Welding Characteristics of Mg Alloy Using Process Tape (Process Tape를 사용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2013
  • Recently, studies about application of magnesium alloy sheet to automotive bodies are on the increase. For application to automotive bodies, researches about characteristics of resistance spot welding of magnesium alloy sheet are essential. Electrode life of resistance spot welding of magnesium alloy is very short due to sticking of magnesium alloy to copper alloy electrode. To increase electrode life, most effective method is inserting cover plate between electrode and magnesium sheet. But application of cover plate to actual process is difficult and decreases welding productivity. Process tape supplied automatically as cover plate can minimize lose of productivity and increase welding quality. In this study, resistance spot welding of magnesium alloy is carried out with applying process tape. Acceptable welding current region according to electrode force and welding time is determined.

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF