• Title/Summary/Keyword: Welding laboratory

Search Result 112, Processing Time 0.026 seconds

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Field trial of expandable profile liners in a deep sidetrack well section and optimizable schemes approach for future challenges

  • Zhao, Le;Tu, Yulin;Xie, Heping;Gao, Mingzhong;Liu, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.271-281
    • /
    • 2022
  • This study discusses challenges of running expandable profile liners (EPLs) to isolate trouble zones in directional section of a deep well, and summary the expandable profile liner technology (EPLT) field trial experience. Technically, the trial result reveals that it is feasible to apply the EPLT solving lost-circulation control problem and wellbore instability in the deep directional section. Propose schemes for optimizing the EPLT operation procedure to break through the existing bottleneck of EPLT in the deep directional section. Better-performing transition joints are developed to improve EPL string reliability in high borehole curvature section. High-performing and reliable expanders reduce the number of trips, offer excellent mechanical shaping efficiency, simplify the EPLT operation procedure. Application of the expansion and repair integrated tool could minimize the risk of insufficient expansion and increase the operational length of the EPL string. The new welding process and integrated automatic welding equipment improve the welding quality and EPL string structural integrity. These optimization schemes and recent new advancements in EPLT can bring significant economic benefits and promote the application of EPLT to meet future challenges.

A Study on the Characteristics of Repair Welding for Mold Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 금형강의 보수용접 특성에 관한 연구)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.7-16
    • /
    • 2010
  • In this study, wire was used as the filler material for the laser repair welding, and the phenomenon in which the supplied filler material was melted and beaded down into the specimen was examined with varying laser powers and welding speeds. The optimal processing condition was found to be the laser power of 1,300 W, the welding speed and feed wire supply speed of 0.5 ml/in and the defocused distances of +2mm. At this time, the heat input(E) was $65{\sim}75\;J/mm^2$, and no internal defect occurred. When repair welding was carried out as the optimal processing for the part that had an external defect with the radius of 2mm, the filler metal was melted, resulting in the volume smaller than the defect part and thus causing the part unfilled. Therefore, it was found to be necessary to carry out repair welding two to three times by multiple passes rather than does it only once by single pass.

A comparative study on the tensile bonding strength of gold alloy solder joints by dental soldering method (치과용 납착 방법에 따른 금합금 납착 연결부의 인장 결합강도 비교 연구)

  • Cho, Mi-Hyang;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • In this study, to provide the fundamental data on stable connection method for successful implants prosthesis, We fabricated the solder joint of gold alloy bar specimens by gas flame soldering method and laser welding and soldering method. It compared and studied the tensile strength of two soldering method by universal testing machine. The results using universal testing machine were as follow : The mean of tensile strength of solder joint bar in gas flame soldering method specimens was 363.89 $\pm$17.62 MPa, and the mean strength of laser welding and soldering method was 125.91 $\pm$ 19.66 MPa, so gas flame soldering method was better than laser welding and soldering method and the finding better way to improve tensile strength is needed in laser welding method. On weak loading condition and the part which is needed an accuracy, laser welding method is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas flame soldering technique would be better for making much more successful prosthesis.

  • PDF

Comparative Analysis of Exposure to Hazardous Factors of Welding Lab Activities in Specialized High School (특성화 고등학교 용접 실습의 유해인자 노출 실태 비교 분석)

  • Min-Ju Kim;Seong-Eun Jang;Hwa-Il Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2024
  • Objectives: This study aims to identify and analyze the exposure status of welding students in specialized high school welding labratories, compare it with the exposure to welding hazards of industrial workers, and seek to improve the educational environment for youth through domestic and international exposure standards. Methods: This study compares the level of exposure to hazardous factors in a welding laboratory of a vocational high school in Jeollanam-do and a welding process in a general industrial site by measuring the work environment. A 10-question survey was conducted to review the effects of welding hazards on the human body, carcinogenicity information, international (US, UK, France) exposure standards, general characteristics between the two groups, and awareness of occupational health. Results: Exposure to hazardous factors in both groups was below the standards set by MOEL. Specialized high school students were exposed to higher levels than workers, and some hazardous factors exceeded the standards when compared to international exposure standards. During the survey, students were less aware of the hazards of welding, safety and health education, and the need for work environment measurement than workers. Conclusions: For the respiratory protection of students in vocational high school welding labs, it is necessary to create a comfortable training environment. Exposure standards for harmful factors should be strictly applied, such as overseas standards, or exposure should be limited by setting a limit on the number of hours of welding practice per week. In addition, it is necessary to conduct safety and health education for welding students to raise their awareness of the importance of measuring the working environment and wearing appropriate protective equipment.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Vacuum Plasma Sprayed NiTiZrSiSn Coating (진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성)

  • Yoon, Sang-Hoon;Kim, June-Seob;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.

A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods (납착 방법에 따른 교정용 와이어의 기계적 특성 비교)

  • Lee, Hye-Jin;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

Magnesium Plate application in Railway Equipment (마그네슘 판재를 이용한 철도부문 경량화 제품 개발)

  • Choi, Kwang
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.99-99
    • /
    • 2009
  • 마그네슘은 지구상에서 존재하는 금속 중 가장 가벼운 실용화 금속이다. 따라서 최근 산업 전반적으로 대두되는 경량화에 대응하는 데 중요한 소재로 각광받고 있으며 그 활용이 활발하게 추진되고 있다. 본 연구에서는 이러한 동향에 대응하는 일환으로 POSCO에서 생산되고 있는 압연 마그네슘판재를 적용하였다. 적용 대상은 철도 분야의 경량화를 위한 전장품을 선정하고, 실물 크기로 제작하였다. 제작은 두께 3.5 mm 의 판재를 사용하였으며 용접은 Friction Stir Welding 및 GTAW 를 사용하였다. 그림1에 제작이 완료된 형상을 나타낸다. 그리고 제작중의 용접과정에 대하여 3차원 열탄소성 해석을 수행하여 변형 과정에 대한 검토를 수행하였다. 그림2에 해석과정의 한 예를 나타낸다.

  • PDF