• Title/Summary/Keyword: Welding defect

Search Result 252, Processing Time 0.032 seconds

Joining Ability and Mechanical Properties of Friction Stir Lap Welded A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 건전성)

  • Ko, Young-Bong;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • In Friction Stir Lap Welding(FSLW), the movement of material within the weld was more important than the microstructure, due to the interface present between the sheets. Thus, The soundness of free defect, Effective Sheet Thickness(EST) and width of joint were most important factor of mechanical properties. Specimens by lap joint types that were 'A-type' and 'R-type' were made in this study. A-type tensile specimen was loaded at advancing side and R-type tensile specimen was loaded at retreating side. Macro-, micro-structural observation and mechanical properties of FSLW A5052-H112 alloy ware investigated under varying rotating and welding speed. The results were as follows: Material hook formed decreasing after sharply increasing was appeared at the end interface of joint area in advanced side, and material hook formed decreasing after smoothly increasing was observed at that in retreated side. Tensile load had no relation with defects. As rotating speed was higher, tensile strength was increasing and EST was decreasing regardless of joint types. joint efficiency was over 70%. In a result of fractography, fracture in A-type was partially occurred by dimple in SZ, and fracture in R-type was generally occurred by dimple in HAZ.

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys (마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향)

  • No, Kookil;Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

A Study on the Improvement of Welding Method for Ice Evaporator (얼음증발기 용접방법 개선에 관한 연구)

  • Lee, Jeong-Youn;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.558-564
    • /
    • 2021
  • The water purifier market has increased rapidly in recent years. The welding technology of the evaporator is a key component that determines the level of ice production and the cold water performance of an ice purifier. The finger type evaporator of an ice purifier can remove ice and is divided largely into an instant heat method and a hot gas method. In the hot gas type evaporator, particularly during the production process, the pinhole phenomenon inside the copper pipe and clogging problems occur intermittently when welding high-pressure pipes due to the high-temperature oxygen welding. Its use in a water purifier can cause a problem in that ice and cold water do not form, and repairs cannot be made on site. To solve this problem, in this study, a cap jig was applied to improve the welding defect of the hot gas evaporator. In addition, the oxygen welding flame size was adjusted so that the heat source could be well supplied to the cap jig, and the effectiveness was confirmed through a wave pressure test, a test, and a thermal shock test.

Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction (카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식)

  • Lee, Won;Yoon, In-Sik;Lee, Byung-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF

A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave (유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법)

  • Kim, Yong-Kwon;Park, Ik-Keun;Park, Sae-Jun;Ahn, Yeon-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF