• Title/Summary/Keyword: Welding Variable

Search Result 130, Processing Time 0.025 seconds

The Arc Brazing by Variable Polarity AC Pulse MIG Welding Machine (극성가변 AC 펄스 MIG용접기를 이용한 아크 브레이징)

  • 조상명;공현상
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.56-62
    • /
    • 2003
  • MIG brazing is used for many parts without melting base metal because of high productivity. Pulsed MIG brazing can be used to further reduce heat input and to improve the process stability. However, a significant amount of zinc in galvanized sheet steel is burned off in the area of brazes. Therefore, the brazing method to reduce the heat input is needed. In the brazing for galvanized sheet steel, variable polarity AC pulse MIG arc brazing can be applied to more decrease the heat input by setting EN-ratio adequately. In this research, we studied for the variable polarity AC pulse MIG arc brazing to decrease the heat input by using ERCuSi-A wire. As the result of increasing EN-ratio, melting ratio of base metal and burning off of zinc were reduced in galvanized sheet steel.

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding (알루미늄의 펄스 전류 미그 용접)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

Theoretical background discussion on variable polarity arc welding of aluminum (가변 극성 알루미늄 아크 용접의 이론적 배경 고찰)

  • Cho, Jungho;Lee, Jungjae;Bae, Seunghwan;Lee, Yongki;Park, Kyungbae;Kim, Yongjun;Lee, Junkyung
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.14-17
    • /
    • 2015
  • Cleaning effect is well known mechanism of oxide layer removal in DCEP polarity. It is also known that DCEN has higher heat input efficiency than DCEP in GTAW process. Based on these two renowned arc theories, conventional variable polarity arc for aluminum welding was set up to have minimum DCEP and maximum DCEN duty ratio to achieve the highest heat input efficiency and weldability increase. However, recent several variable polarity GTA research papers reported unexpected result of proportional relationship between DCEP duty ratio and heat input. The authors also observed the same result then suggested combination of tunneling effect and random walk of cathode spot to fill up the gap between experiment and conventional arc theory. In this research, suggested combinational work of tunneling effect and rapid cathode spot changing is applied to another unexpected phenomena of variable polarity aluminum arc welding. From previous research, it is reported that wider oxide removal range, narrower bead width and shallower penetration depth are observed in thin oxide layered aluminum compared to the case of thick oxide. This result was reported for the first time and it was hard to explain the reason at that time therefore the inference by the authors was hardly acceptable. However, the suggested combinational theory successfully explains the result of the previous report in logical way.

A study on welding connection's fatigue analysis through numerical and experimental approaches (용접이음부의 피로강도 해석을 위한 수치해석과 실험과의 비교연구)

  • 조규남;하우일
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.113-123
    • /
    • 1993
  • Most of the ship structures and offshore structures are constructed through the welding and they are always subjected to variable loads. In this study, fatigue and stress concentration of the various types of welding connections due to the variable loads are investigated by using numerical approach, and comparisons between numerical analysis and experiments are performed. Fillet weld, full penetration weld and partial penetration weld characteristics are studied by using parameters such as penetration length, welding leg length, size and penetration angle. Based on this study, it is suggested that the fillet welding can be replaced with the penetration welding in some cases. The results of this study can be used as guidelines for actual welding problems in the shipyards.

  • PDF

A Study on Weld Defect and Their Alternatives during Lap Welding of AZ31B Magnesium Alloy by Pulsed Nd: YAG Laser (Nd:YAG 펄스 레이저를 이용한 AZ31B 마그네슘 합금의 겹치기 용접에서 발생하는 용접결함과 그 대책에 대한 연구)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Young-Sik
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • With a tendency for the application of thin magnesium alloy plates in portable electronic equipment such as cell phone and notebook PC, there is a requirement to develop a welding technology for the lap welding of these thin magnesium alloy. This paper presents the single pulsed laser welding of AZ31B magnesium alloy. The effects of fiber types and parameters such as peak power and pulse width on laser weldability were investigated. The results show that weld defects, especially solidification crack, were always generated in the weld. These defects couldn't be controlled by the simple square pulse, but could be improved through the application of variable pulse. It is because that variable pulse has effect of solidification delay by dropping peak power gradually.

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF