• Title/Summary/Keyword: Welding Part

Search Result 568, Processing Time 0.027 seconds

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

Simulation of Plate Deformation due to Triangle Heating Using Inherent Strain Method (고유변형도법을 이용한 삼각가열에 의한 판 변형의 시뮬레이션)

  • Jang, Chang-Doo;Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.703-709
    • /
    • 2008
  • In the shipyard, line heating and triangle heating are two major processes for forming curved plates in various shapes. While there have been many studies on line heating, triangle heating has been rarely studied due to its complicated heating process with irregular multi-heating paths and highly concentrated heat input. As the triangle heating process is one of the most labor-consuming jobs in shipyards, it is essential to study the automation as well as improvement of triangle heating process in order to increase hull forming productivity. In this study, a pioneering attempt to simulate triangle heating was made. A circular disk-spring model was proposed for elasto-plastic analysis procedure of triangle heating and the inherent strain method was also used to analyze the deformation of plates. Simulation results were compared with those of experiments and showed good agreement. It is shown that the present approach including analysis model used in this study is effective to simulate the triangle heating for plate forming process in shipbuilding.

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF

Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

  • Ha, Seung-Ryong;Kim, Sung-Hun;Song, Seung-Il;Hong, Seong-Tae;Kim, Gy-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.254-258
    • /
    • 2012
  • Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar$^{(R)}$ is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar$^{(R)}$ was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar$^{(R)}$ system in a mandibular edentulous patient.

Microstructure and Strength of the Microjoined Electrode for the Lamp of the LCD Backlight Unit (TFT-LCD 백라이트 유닛(BLU) 램프용 전극 미세 접합부의 강도 및 미세조직)

  • Kim, Gwang-Soo;Kim, Sang-Duck
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • TFT-LCD is the most popular type of flat display panel in the information technology field. The back light unit is a main part of the structure of a TFT-LCD panel. Occasionally, studies have shown that failures of the CCFL of the BLU occur due to the poor weld characteristics of these materials. The aim of this study was to prepare some technical data and to characterize a microjoined electrode for the CCFL. Microstructure examinations, microhardness measurements, resistance measurements and microtensile tests of the microjoined electrode were carried out. The result indicates that a large amount of grain coarsening exists in the heat-affected zone (HAZ) of the weld between the cup and the pin. This grain coarsening of the HAZ between the cup and pin is caused by the welding cycle, which may have an influence on the lowest microhardness values. Fracturing of the microjoined electrode also occurred at the HAZ close to the cup between the weld holding the cup and the pin. Additionally, no specific changes of the electrical resistance among the cup, pin, and lead wire themselves or in the microjoined electrode were observed.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Comparison of Fatigue Provisions in Various Codes and Standards -Part 1: Basic Design S-N Curves of Non-Tubular Steel Members

  • Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.161-171
    • /
    • 2021
  • For the fatigue design of offshore structures, it is essential to understand and use the S-N curves specified in various industry standards and codes. This study compared the characteristics of the S-N curves for five major codes. The codes reviewed in this paper were DNV Classification Rules (DNV GL, 2016), ABS Classification Rules (ABS, 2003), British Standards (BSI, 2015), International Welding Association Standards (IIW, 2008), and European Standards (BSI, 2005). Types of stress, such as nominal stress, hot-spot stress, and effective notch stress, were analyzed according to the code. The basic shape of the S-N curve for each code was analyzed. A review of the survival probability of the basic design S-N curve for each code was performed. Finally, the impact on the conservatism of the design was analyzed by comparing the S-N curves of three grades D, E, and F by the five codes. The results presented in this paper are considered to be a good guideline for the fatigue design of offshore structures because the S-N curves of the five most-used codes were analyzed in depth.

Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

  • Seo, Bosung;Song, Kuk Hyun;Park, Kwangsuk
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1232-1240
    • /
    • 2018
  • Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

A Research on the Processing Method to Minimize the Outer Radius(Sharp edge) in Sheet Metal Z-bending Work (박판의 Z-굽힘가공에서 외측 굽힘반지름 치수의 최소화(샤프에지) 가공법에 관한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.349-355
    • /
    • 2017
  • Bending work using press dies involves bending a flat blank to a desired angle. The bending produces a flange (the bent part) and a web (the unbent part). The bending line will have a bending angle, and there is an inner and outer bending radius. The minimum inner radius size is determined by the material used. When the inner radius size is too small, there will be excess metal welding, which will cause a crack in the outer radius part. The outer bending radius size cannot be controlled by a bending punch and die block. Types of bending include V-bending, U-bending, O-bending, edge bending, twist bending, and crimping. Z-bending involves two bending lines, which are set on the upper side and under surface of the blank, respectively, and upward or downward bending is used. Z-bending is also called crank bending. Z-bending using this type of die structure will produce a standard inner bending radius. The standard size is the minimum bending radius that represents the angle radius of the bending punch. In industry, there is a need for a sharp edge shape with a very small size (R=0.2mm), but that is not possible when using bending punch and die block. The purpose of this research is to meet the need by development.