• Title/Summary/Keyword: Welding Part

Search Result 568, Processing Time 0.021 seconds

Study on the Simultaneous Control of the Seam tracking and Leg Length in a Horizontal Fillet Welding Part 1: Analysis and Measurement of the Weld Bend Geometry

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2001
  • Among the various welding conditions, the welding current that is inversely proportional to the tip-to-work-piece distance is an essential parameter as to monitor the GMAW process and to implement the welding automation. Considering the weld pool surface geometry including weld defects, it should modify the signal processing method for automatic seam tracking in horizontal fillet welding. To meet the above necessities, a mathematical model related with the weld pool geometry was proposed as in a conjunction with the two-dimensional heat flow analysis of the horizontal fillet welding. The signal processing method based on the artificial neural network (Adaptive Resonance Theory) was proposed for discriminating the sound weld pool surface from that with the weld defects. The reliability of the numerical model and the signal processing method proposed were evaluated through the experiments of which showed that they are effective for predicting the weld bead shape with or without the weld defects in a horizontal fillet welding.

  • PDF

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

GMA Torch Configuration for Efficient Use of Argon Gas Part 1 : Effects of AMAG and DMAG Torches on Argon Composition (아르곤 가스를 효율적으로 사용하기 위한 GMA 용접 토치 구조 Part 1 : AMAG와 DMAG 토치가 아르곤 조성에 미치는 영향)

  • 최상균;문명철;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.38-45
    • /
    • 1999
  • Shielding gas has significant effects on arc stability, metal transfer and weld quality in the gas metal arc welding (GMAW) process. The double gas-shielded MAG(DMAG) and auxiliary gas-shielded MAG (AMAG) torches are investigated for their capability to provide argon-rich gas mixture using small amount of argon gas through the inner and auxiliary nozzles, respectively. Argon composition with the DMAG torch is calculated numerically, and compared with the measured data using the gas chromatogrphy. Gas flow pattern of the DMAG torch is calculated to change from the laminar to turbulent flow when total gas flow rate becomes larger than 4.5 liter/min at room temperature. While argon-rich shielding gas was obtained using both the AMAG and DMAG torches, the AMAG torch provides higher argon composition than the DMAG torch, which demonstrates that argon gas can be utilized more efficiently with the AMAG torch.

  • PDF

Heat source modeling of laser arc hybrid welding considering keyhole formation (키홀 형성을 고려한 레이저 아크 하이브리드 용접 열원 모델링)

  • Jo, Yeong-Tae;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.97-99
    • /
    • 2005
  • Laser arc hybrid process is actively researched as a new welding method since it has several advantages by the combination of laser beam and electric arc. By the coupling of two different heat sources, laser and arc mutually assist and influence. High power laser can make the deep keyhole and arc plasma can form the large bead shape. In this paper the effect of two different heat sources to weld bead are investigated and as a result of analysis, it is shown that the lower part of keyhole is heated by laser and the upper part of weld pool is dominantly heated by arc.

  • PDF

Detailed analysis of Non-Welding Composite Pile Joint (무용접 복합말뚝 연결부 상세 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.441-448
    • /
    • 2009
  • In this study, the joint part of non-welding composite pile is investigated by a three dimensional finite element analysis. Special attention is given to the overall stress distribution under lateral, axial and tensional load conditions. Through comparisons with allowable stress of materials, a simple method is proposed to estimate the ultimate load condition of joint part. The appropriate design method is suggested and highlighted through the numerical analysis.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Evaluation of the Plastic η-Factor Considering Strength Mismatch in a Narrow Gap Welding Part (II) (협계용접부 강도 불균일을 고려한 소성 η계수 평가 (II))

  • Huh, Yong;Kim, Hyung-Ick;Lee, Kwang-Hyeon;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.512-518
    • /
    • 2008
  • This study would like to evaluate the influences with the strength mismatch and the variation of the welding width of the narrow gap welding for the plastic parameter, the major constant determining the plastic ${\eta}$-factor of J-Integral, using 3-D FEM. For this, we evaluate the plastic ${\eta}$-factor according to the variation of the strength mismatch of weldment with same materials and welding width through FEM. Also, we proposed the equation of plastic ${\eta}$-factor considering the variation of the strength mismatch of weldment with similar materials and welding width.

The Establishment of Bonding Conditions of Cu Sheet using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 접합성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper gives a description of an experimental study of the ultrasonic welding of metals. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu sheet. The Cu sheet welding was done with different amplitude, pressure and welding time, and its maximum tension was measured. Maximum tension of 177.99N was obtained when the pressure was 2.5bar, amplitude was 80%, and welding time was 0.34sec. Therefore, excessive welding condition negatively influences maximum tension measurement result.

Development of Intelligent Monitoring System for Welding Process Faults Detection in Auto Body Assembly (자동차 차체 제조 공정에서 용접 공정 오류 검출을 위한 지능형 모니터링 시스템 개발)

  • Kim, Tae-Hyung;Yu, Ji-Young;Rhee, Se-Hun;Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • In resistance spot welding, regardless of the optimal condition, bad weld quality was still produced due to complicated manufacturing processes such as electrode wear, misalignment between the electrode and workpiece, poor part fit-up, and etc.. Therefore, the goal of this study was to measure the process signal which contains weld quality information, and to develop the process fault monitoring system. Welding force signal obtained through variety experimental conditions was analyzed and divided into three categories: good, shunt, and poor fit-up group. And then a monitoring algorithm made up of an artificial neural network that could estimate the process fault of each different category based on pattern was developed.

A Study on Laser Welding Application of the Cowl Cross Member for Ultra-High Strength Steel (초고장력 강판을 적용한 Cowl Cross Member의 레이저 용접 적용에 관한 연구)

  • Park, Dong Hwan;Yun, Jae Jung;Kim, Kun Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.525-531
    • /
    • 2014
  • A cowl cross is a part of the car's instrument panel used to maintain the rigidity of the vehicle body side. The application of laser welding has the benefits of speed and thermal deformation compared to arc welding. An ultra-high strength steel sheet is used to reduce the weight of the vehicle body parts. Generally, formability of such a steel sheet is poor because its elongation is very low. For this reason, a method for cold forming of an ultra-high strength steel sheet is required. This paper describes how to improve the formability and weldability of the ultra-high strength steel sheet. Mechanical tests of this material were also performed to evaluate the welding properties of $CO_2$ (GMAW) and those of laser welding.