• Title/Summary/Keyword: Welding Part

Search Result 568, Processing Time 0.024 seconds

Friction Welding Analysis of Welding Part Shape with Flow Gallery by Friction Welding (마찰용접에 의해 유동부를 갖는 용접부 형상의 마찰용접해석)

  • Yeom S. H.;Nam K. O.;Yoo Y. S.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.109-112
    • /
    • 2005
  • Friction welding is welding method to use frictional heat of two material. A defect of friction welding is that create flash. The flash is part that must have cut after welding finished. But the welding part with flow gallery by friction welding can't cut flash. Therefore the welding part with flow gallery was designed with no effect in flow. In this research, decide the welding shape parameter of welding part with flow gallery and do friction welding analysis. In friction welding analysis, must input necessary S-S curve, friction coefficient by temperature change, upset pressure, RPM etc. According to analysis result, decided the optimal shape of welding part with no effect in flow.

  • PDF

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 2 - Process Analysis (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 2 - 공정해석)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.55-60
    • /
    • 2005
  • In part 1. optimal process parameters such as thickness of stopper and welding time are achieved to produce high strength ISB(Inner Structured and Bonded) panels. Developed process is different from the usual resistance welding process in the number of points welded at a time. In part 2, Numerical modeling for this new process is proposed and the variation of contact area with respect to the gap of electrodes is studied through FE analyses, Besides, it is tried to figure out the welding nugget formation and proper distance between welding points. FE analytic results show that inner structures are melted more than skin plate, and current distribution between points to be welded can be controlled by distance welding points. Comparison of some FE analytic results with corresponding experimental results could confirm the validity of the proposed numerical modeling.

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.

Comparisons Fitness in Implant Abutment between Gas Soldering and Laser Welding

  • Cho, Mi-Hyang;Nam, Shin-Eun
    • International Journal of Clinical Preventive Dentistry
    • /
    • v.14 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • Objective: Osseointegration is essential process for successful implants and effects to implant in long term, therefore, passive fitness of good prosthesis is necessary. To make a good prosthesis, at first it should be done a sectioned casting and then joined method of sectioned casting body is recommended. Methods: In this study, to provide the fundamental data on stable connection method for successful implants, the author tested fitness of casting body, and compared difference between gas soldering technique and laser welding technique. Results: In fitness test of 2 abutment (test A, C), gas soldering group's fitness in the opposite part of connection was worse than laser welding group. In fitness test of 3 abutment (test B, D), gap distance was increased both in gas soldering technique and laser welding technique. Gap distance at the connecting part and the opposite part of the abutment in gas soldering technique was worse than laser welding technique and the more additional abutment, the worse gap distance in gas soldering technique. In fitness test of 3 abutment (test B, D), there's little variation in No. 2 abutment when connecting soldering process was done and there's little influence on already soldered connection part when the additional soldering connection was done. Conclusion: On weak loading condition and the part which is needed an accuracy, laser welding technique is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas soldering technique would be better for making much more successful prosthesis.

An automatic welding system for a part of fork lift (FORK LIFT 부품 용접자동화 시스템)

  • 김재웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.448-451
    • /
    • 1986
  • An automatic welding system is designed for a part of fork lift. The system is composed of articulated type welding robot, welding positioners, shuttle for robot, system controller and welding equipment. From the application of the system, stable weld quality and production cost saving are achieved. In this paper, the hardware features and control structure of the system are presented.

  • PDF

Development of a Intelligent Welding Carriage for Automation of Curved Block

  • Choi, H.B.;Moon, J.H.;Jun, W.R.;Kim, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-630
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, $1{\sim}7$ [mm] and inclination, $0{\sim}30$ [deg]. Since available conventional carriage type is limited to use below root gap of 3 [mm], only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage, current and travel speed, with respect to root gap and inclination to achieve good welding quality. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verify the trajectory tracking accuracy of end-effector.

  • PDF

Development of a Intelligent Welding Carriage for Automation of Curved Block (곡 블록 자동화를 위한 지능형 용접 캐리지 개발)

  • Choi HeeByoung;Moon JongHyun;Jun WanLyul;Kim Sehwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.171-176
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, 1-7 (mm) and inclination, 0-30 (deg). Since available conventional carriage type is limited to use below root gap of 3 (mm), only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage. current, weaving speed, dwell time and travel speed, with respect to root gap and inclination to achieve good welding qualify. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verifying the trajectory tracking accuracy of end-effector.

  • PDF