• 제목/요약/키워드: Welding Material Amount

검색결과 54건 처리시간 0.027초

고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향 (Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230)

  • 강길모;전애정;김홍규;홍성석;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성 (The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS)

  • 오인석;김길무;문병식
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

P-No. 1 탄소강의 기계적 특성과 미세조직에 미치는 용접후열처리의 영향 (Effect of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of P-No. 1 Carbon Steels)

  • 이승건;강용준;김기동;강성식
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.26-33
    • /
    • 2017
  • This study aims to investigate the suitability of requirement for post-weld heat treatment(PWHT) temperature when different P-No. materials are welded, which is defined by ASME Sec. III Code. For SA-516 Gr. 60 and SA-106 Gr. B carbon steels that are typical P-No. 1 material, simulated heat treatment were conducted for 8 h at $610^{\circ}C$, $650^{\circ}C$, $690^{\circ}C$, and $730^{\circ}C$, last two temperature falls in the temperature of PWHT for P-No. 5A low-alloy steels. Tensile and Charpy impact tests were performed for the heat-treated specimens, and then microstructure was analyzed by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. The Charpy impact properties deteriorated significantly mainly due to a large amount of cementite precipitation when the temperature of simulated heat treatment was $730^{\circ}C$. Therefore, when dissimilar metal welding is carried out for P-No. 1 carbon steel and different P-No. low alloy steel, the PWHT temperature should be carefully selected to avoid significant deterioration of impact properties for P-No. 1 carbon steel.

현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구 (A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft)

  • 임옥수
    • 디자인학연구
    • /
    • 제17권4호
    • /
    • pp.241-250
    • /
    • 2004
  • 이 논문은 현재에 통용되고 있는 동합금판 C2200, C5210, C7701, C8113 등의 특징 및 용도와 소재의 재질적 특성을 data화하였고, 그 표현의 가능성을 조사하여 수치화하였고, 그 기법실험의 1단계로서 일반접합과 TIG 접합에 대하여, 2단계 실험으로서 망상조직기법과 전해주조기법에 대하여 농하였으며, 이 기법을 응용한, 연구작품의 3가지 사례를 다루었다. 이 때 사용한 동합금은 (주)풍산금속 소재기술연구소 이동우 박사가 지원한 4가지 동합금, 즉 단동, 스프링용 인청동, 스프링용 양백, 백동을 사용하여, 적층기법, 망상조직기법, 융합기법, 전해주조기법을 작품에 따라서 통합 또는 부분적으로 적용시켰다. C2200 의 경우, 황동은 2mm이하의 박판(薄板)에서는 교류 TIG 용접법이 좋으며 그 이상에서는 직류 정극성 TIG 용접법으로, 용접에 의한 잔류 응력부식을 열처리를 250~300도에서 행한다. C5210 의 경우는 고온의 환원성기(還元性氣)중에서도 수소(水素) 취성이 없고 고온에서 O를 흡수하지 않으며, 경화(輕化) 온도도 약간 높아, 용접용으로 매우 적합하다. 일반적으로 Sn을 2-9% P를 0.03-0.4%정도 포함하고 있는데, Sn의 함유량이 증가함에 따라 응고 온도 범위가 광범위해졌으며 용접후의 냉각 시, 열분열 방지에는 TIG용접의 용접속도를 빠르게, 용융지(溶融池)를 작게, 예열 온도는 200도로 하는 것이 좋다. C7701의 경우는 조성범위가 10-20% Ni, 15-30% Zn의 것이 많이 사용된다. 약 30% Zn 이상이 되면(${\alpha}+{\beta}$) 조직이 되어 점성이 낮아지고 냉간 가공성은 저하하나 열간 가공성은 좋다. 양백은 또한 전기저항이 높고 내열, 내식성이 좋다. C8113의 경우는 내해수성, 내마모성이 우수하며 고온 강도가 높고 백동은 10-30% 니켈을 포함하며 완전히 고용(固溶)해서 단상(單相)이 된다. 이 때문에 결정입(結晶粒)도 크게 되기 쉬우며, 구속이 강한 경우 미량의 Pb, P, S라는 분열 감수성이 높아진다.

  • PDF

초음파 융착기용 압전 세라믹스의 전기적 특성 (Electrical Properties of Piezoelectric Ceramics for Ultrasonic Welder)

  • 이수호
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.201-204
    • /
    • 2018
  • 압전 상수 d의 값과 유전 상수 및 전기 기계적 결합 계수가 초음파 용접기에 사용되는 압전 세라믹의 출력에 영향을 주고 있습니다. 따라서 본 연구에서는 초음파 융착기의 진동 소자로 사용할 압전 세라믹 PZT-PMN-PZW의 $MnO_2$ 첨가량에 따른 세라믹의 특성을 조사 하였으며, $MnO_2$의 첨가량을 2 wt.%로 한 경우, 가장 우수한 특성을 얻을 수 있었으며, 이는 초음파 융착기용 진동소자로서의 적용 가능성을 시사하였다.

Cu-Si계 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징에서 인장성질에 미치는 입열량의 영향 (Effect of the Heat Input on the Tensile Properties in Arc Brazing of Ferritic Stainless Steel using Cu-Si Insert Alloy)

  • 김명복;김상주;이봉근;원신건;윤병현;우인수;강정윤
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.289-296
    • /
    • 2010
  • The effects of heat input and different microstructureswere investigated on the tensile-shear properties of an arc-brazed joint of theferritic stainless steel 429EM using a Cu-Si insert alloy. The brazing speed was fixed at 800 mm/min whilethe brazing current varied from 80 to 120A. For abrazing current lower than 100A, fracturing occurred at the joint root in the direction perpendicular to the tensile load. As the brazing current increased to 120A, fracturing occurred at the base metal or the joint root. The joint and the base metal had very similar yield and tensile load values. However, the amount of elongation was decreased considerably compared to when the base metal was used. The fracturing began at the triple point of the root part and was classified into three types. The difference in the tensile-shear properties was closely related to the three fracture types.

정련·단접 공정 재현 실험을 통해 생산된 소재 및 부산물의 재료학적 특성 (Material Characteristics of Forge Welded Bar and By-product through Reproduction Experiment to the Refining and Forge Welding Process)

  • 오민지;조현경;조남철;한정욱
    • 보존과학회지
    • /
    • 제34권2호
    • /
    • pp.87-96
    • /
    • 2018
  • 본 연구는 정련 단접 공정을 재현하고 그 과정에서 발생한 강괴 및 단조박편을 단접 횟수에 따라 분류하여 분석하였다. 강괴의 경우 단접 횟수가 증가함에 따라 불순물과 공극률이 26.09%에서 1.8%로 줄었다. 또한 경도는 평균 36.88HV 가량 높아졌다. 이는 금속 조직이 점차 치밀해지는 것을 관찰할 수 있었다. 단조박편의 경우 단접 횟수에 따라 전철량이 높아졌다. XRD 분석 결과 Quartz, Fayalite, $W{\ddot{u}stite$, Magnetite가 관찰되며 횟수가 증가함에 따라 Quartz의 양이 낮아졌다. 또한 단접 횟수가 늘어남에 따라 입상(粒狀)의 $W{\ddot{u}stite$들이 응집(凝集)하여 굵고 긴 백색의 띠 형태로 관찰되었다. 이상의 결과로 정련 단접 공정에서 발생한 강괴 및 단조박편의 횟수별 특징을 알 수 있었으며 향후 고대 제철공정 및 철기 제작기술 체계를 정립할 수 있는 기술 자료로 활용할 수 있을 것으로 본다.

PTA법에 의한 스텔라이트 12 합금 육성층의 조직과 경도에 미치는 전류와 예열온도의 영향 (The Effect of Current and Preheat Temperature on Structure and Hardness of Stellite 12 Alloy Overlayer by PTA Process)

  • 정병호;김무길;김규덕;김민영;이성열
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.246-252
    • /
    • 2000
  • Stellite 12 alloy-powder was overlaid on 410 stainless steel valve seat using plasma transferred arc(PTA) process. Variation of characteristic of microstructure and hardness of deposit with current(90~150 A) and preheat temperature(R.T.~$400^{\circ}C$) was investigated. Important conclusion obtained are as follows; All welding conditions used produced a sound deposit layer with no defect in single pass welding. The maximum deposit had 4.0~4.8 mm in thickness and its bead width was increased with increase of current and preheat temperature. The deposit showed hypoeutectic microstruture, which was consisting of primary cobalt dendrite and networked $M_7C_3$ type eutectic carbides. The amount of eutectic carbides was decreased and its dendritic secondary arm spacing was increased with increase of current. Hardness of the deposit was decreased with increase of current. Preheat temperature up to $400^{\circ}C$, however, showed little influence on the hardness and microstructure. The hardness was also influenced by diluted Fe content near the interface in addition to microstructure and dendritic secondary arm spacing. Hot hardness at $500^{\circ}C$ showed higher than 300 HV.

  • PDF

API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints)

  • 손혜정;김선진
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF