• Title/Summary/Keyword: Welding Condition

Search Result 867, Processing Time 0.022 seconds

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Mechanical Properties of Metal Inert Gas Welding Conditions of Railway-Vehicle Aluminum Under Frame (철도차량 AI 하부구조의 MIG 용접 조건에 따른 기계적 특성에 관한 연구)

  • Jung, Sang-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-25
    • /
    • 2021
  • In this study, the mechanical properties of railway-vehicle aluminum under frame was investigated based on the metal inert gas (MIG) welding conditions. An aluminum-alloy (6005A-T6) extruded material used in the lower panel of a railway vehicle was connected through MIG welding to determine the mechanical properties of MIG welds. Argon shielding gas and filler materials, such as ER5356 and ER4043, were used as consumable welding materials. For the welding conditions of the test specimen, welding frequencies of 2.5 and 4.5 Hz were applied using the SynchroPuls function, and the root faces were 1.0 and 1.5 mm. The mechanical properties of the MIG welds were determined through tensile, bending, and fatigue tests.

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

A Study on Remote CO2 Laser Welding for the Development of Automobive Parts (차체부품 개발을 위한 원격 CO2 레이저 용접에 관한 연구)

  • Song, Mun-Jong;Lee, Gyu-Hyun;Lee, Mun-Yong;Kim, Sok-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.75-79
    • /
    • 2010
  • The Remote welding system(RWS) using $CO_2$ laser equipment has focusable distance of laser beam longer than 800 mm from workpiece and can deflect the laser beam by the scanner mirrors very rapidly. In the case of normal welding system based on robot, there is a limit to move the shortest path in short time and this causes interference between robot and workpiece. On the other hand, RWS is the optimized equipment to get big merits with advanced sequence of welding and short cycle time. However, there is still a pending task such as the control of plasma in the welding process of thick sheets therefore, it requires high power laser beam because of the absence of assist gas equipment in itself. In this study, high-tensile steel plates were overlap welded with $CO_2$ RWS for the production of car body and the influence of penetration depth according to the existence of assist gas was analyzed. Excellent tensile strength with enough width of molten zone independent to penetration depth was observed under welding condition with 3.6 kW laser power and 2.8 m/min welding speed without assist gas. Finally, the proto-type automotive parts were produced by applying the deduced optimal welding condition.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

Thermal Analysis of Continuous Casting Welding-Coated Mold (용접코팅된 연속주조 몰드의 열해석)

  • 이종선;김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • This study is object to thermal analysis of continuous casting welding-coated mold. A two-dimen-sional transient finite element model was developed to compute the temperature distribution for continuous casting welding-coated mold. For thermal analysis using analysis result from FEM code. This thermal analysis results, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Development of Automatic Welding DB System using Panel PC (패널 PC를 이용한 용접 자동화 DB 시스템의 개발)

  • Kim, D.W.;Park, J.H.;Shin, D.R.;Park, H.S.;Jung, D.I.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2284-2287
    • /
    • 2004
  • In this paper, an automatic welding DB system using a panel PC is developed. In the developed system, a automatic welding system is remotely controlled to overcome the restriction of operating condition by a portable panel PC, and the DB system such as the operating condition and control data of automatic welding carriage is developed by ATMega128.

  • PDF

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Investigation on friction stir welding and friction stir processing for 5456-H116 (5456-H116 합금에 대한 마찰교반 용접과 마찰교반 프로세싱에 관한 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.242-243
    • /
    • 2009
  • Friction stir welding and friction stir processing is a new solid state processing technique for ioining and micro..structural modification in metallic materials. It has been applied not only joining for light metals but also modification of the microstructure to enhance mechanical properties. In thin study, we investigated the mechanical properties for applied friction stir welding and processing under various parameters such as probe diameter, probe type, traveling speed and rotating speed for 5456-H116 AI allov. As a result of experiments, optimum condition of friction stir welding is traveling speed of 15mm/min, rotating speed of 500RPM at 6mm diameter probe. Moreover, in the case of friction stir processing, the optimum condition is traveling speed of 15mm/min, rotating speed of 250RPM at full screw probe. As above mentioned, the mechanical characteristics enhanced with the decreasing of traveling speed and the increasing of friction areas because of plastic flow due to high friction heat. These result can be used as reference data for ship repairment.

  • PDF

Analysis on Durability Performance of Spot Welding by the Status of Over-Slam Bumper in Hood System (후드 오버슬램범퍼 조립 상태에 따른 점용접의 내구성능 영향 분석)

  • Lee, Hyuk
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • Purpose: Recently, Issues on security for vehicles are getting increased all around the world. Especially, hood panel needs to be thinner for the protection of pedestrians. But thinner panel makes durability get worse. So, it is needed to satisfy both of them. Methods: Durability effectiveness will be studied because properties and assembly allowance of over-slam bumper mostly affects durability of hood panel. Overlap of over-slam bumper can be made in production line and it can affect durability of spot welding in hood inner panel. Daguchi method is used to catch the condition in which load gets smaller and location, hardness and quantity of overlap are selected to be factors. Durability effectiveness is analyzed with the factors. Result: the mechanism that affects on spot welding is identified. The test was conducted in both open/close and driving condition and the relation between both conditions is analyzed. Conclusion: The test contributed to durability of hood panel with optimization of over-slam bumper.