• 제목/요약/키워드: Welding Analysis

검색결과 1,783건 처리시간 0.028초

외력을 고려한 양면 T-용접이음부의 음력해석 (Stress Analysis of Double T-Welded Joints Considering External Forces)

  • 김성환;방한서;방희선;송관형
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.215-220
    • /
    • 2001
  • In the T-joint welding, the complete penetration joint which is obtained by groove welding with edge preparation is generally required thor the safety and reliability of structures but this way have the some defects such as increase of working time, consumed welding electrode quantity and large welding deformation. If there is no probrem, in the strength, T-joint welding without edge preparation will be profitably understood in the economical and welding deformation side. In this paper, we performed the finite element analysis to understand the characteristics of welding residual stresses on two models, complete penetration joint have the edge preparation and incomplete penetration joint without edge preparation, respectively. Especially, we observed the relation between welding residual stress distributed on the notch of gap in the root and external force in the incomplete penetration joint without edge preparation.

  • PDF

도그 피스 설치량에 따른 맞대기 용접 변형 연구 (A Study on the Butt Welding Deformation Considering Dog-Piece Setting)

  • 유현수
    • 해양환경안전학회지
    • /
    • 제21권2호
    • /
    • pp.194-199
    • /
    • 2015
  • 본 연구에서는 도그 피스 설치량에 따른 용접 변형 실험을 수행하여 용접 변형 감소 효과를 정량적으로 평가하였고, 도그 피스 설치를 고려한 용접 변형 해석 방법을 제안하였다. 용접 변형 실험 결과, 도그 피스 설치량이 증가할수록 용접 변형이 감소하며 최대 74%의 변형 감소 효과가 있음을 확인하였다. 원판형 열속 모델을 사용한 열탄소성 유한요소 해석을 활용하여 도그 피스 설치를 고려한 용접 변형 해석 방법을 제안하고, 해석 결과와 실험 결과가 좋은 유사성을 보이고 있음을 확인하였다. 본 해석 방법은 현행 도그 피스 설치량에 대한 적정 여부를 평가하거나 도그 피스 사용량을 절감할 수 있는 설치 가이드를 마련하기 위한 해석적 툴로 활용될 수 있다.

유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석 (Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method)

  • 강대민;박경도;정영석
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석 (Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow)

  • 염성호;김범년;홍성인
    • 한국추진공학회지
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2007
  • 마찰용접은 소재를 서로 마찰시켜 마찰열에 의해 용접하는 방법이다. 본 연구는 내부에 유동부를 갖는 부분을 마찰용접을 이용하여 용접했을 때 유체의 유동에 영향이 없는 유동부를 설계하는데 목적을 두고 있다. 용접부의 설계 변수를 결정하고 이에 대하여 마찰용접 해석을 DEFORM-2D를 이용하여 해석을 수행하였다. 마찰용접 해석을 수행하기 위해 온도변화에 따른 마찰계수와 업셋 압력, 소재의 분당회전수, 그리고 유동응력을 입력해 주었다. 해석결과에 따라서 유동에 영향이 없는 용접부의 최적형상을 결정하였다.

다층 맞대기용접의 쉘 요소 기반 변형해석법 개발 (Development of Distortion Analysis Method for Multi-pass Butt-welding Based on Shell Element)

  • 하윤석;양진혁
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.54-59
    • /
    • 2010
  • Ship Blocks are assembled by welding, and among them, welding between large blocks (Pre-erection stage) is used as feature of butt. In this process, local material has a experience of thermal cycle and become finally shrunk. As for inconsistency of shrunk weldments and adjacent regions, ship structure would be deformed locally and globally. Thermal distortion analyses are done for control of these processes, and methodologies capable of ship block size among them are using 2-D shell element in FEM. A shell element takes charge of plate, so it has its thickness which is important for angular distortion by welding. By the way, a butt-welding consists normally of several passes, and weldment thickness are different at each pass. If a calculated final one-time welding shrinkage is acting on the shell element whose thickness is same as it of plate, then deformation value must be underestimated. This research developed a methodology that total deformation after multi-pass welding can be analyzed by one time at shell element having original thickness of its plate. We use the SDB thermal distortion analysis method and verified by several experiment. The both experimental and analysis results showed good agreements.

용접구조물의 변형 예측에 관한 연구 (A Study on the Prediction of Deformation of Welded Structures)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.64-73
    • /
    • 1997
  • Deformations of structures due to welding appear much complicated and deformated modes are also complex. As parameters governing deformations are various and effect of parameters on deformations is not well known, precise prediction of deformation due to welding has been a difficult problem. Until now, many research papers as to welding deformation have been published, but the research results can explain only one aspect of welding deformation have been published, but the research results can explain only one aspect of welding deformation and are hard to be used in reasonable prediction of welding deformations in complicated structures. In this study, based on the accumulated results concerning to welding deformations, a practical method to predict complicated welding deformations of large structure is proposed. A simplified model to estimate residual plastic strains is suggested and main parameters affecting residual plastic strains are shown to be heat input and joint restaints. Inherent strain theory and experimental data are combined with the finite element method and welding deformations of large structures are calculated by elastic analysis. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

A STUDY ON WELDING RESIDUAL STRESS BY NUMERICAL SIMULATION ON FRICTION STIR WELDING

  • Bang, Han-Sur;Kim, Heung-Ju;Go, Min-Seong;Chang, Woong-Seong;Lee, Chang-Woo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.505-510
    • /
    • 2002
  • The Friction Stir Welding (FSW) is a new joining method that was developed at The Welding Institute (TWI) in England in 1991. It applied heating by the rotational friction and material plastic flow. It was developed as a new joining method to solve the problems of epochally in the welding of Al alloys. In the study, 6000series of Alloy composed of AI-Mg-Si, one of the Al alloys that are utilized for shipbuilding and construction, is selected as a specimen and the numerical is executed against the welded zone of FSW. The material used in this study had the unique properties of strength and anti-corrosion, but since the welded joint of this material is easily softened by the welding heat, FSW is executed and the numerical analysis is carried out around the joint. To examine the mechanical behaviors and properties, F.E.M analysis is executed and the developed thermal-elastic-plastic [mite analysis are used.

  • PDF

알루미늄 합금재의 마찰교반용접 유한요소해석에 관한 연구 (A Study on the Finite Element Analysis in Friction Stir Welding of Al Alloy)

  • 이대열;박경도;강대민
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.81-87
    • /
    • 2015
  • In this paper, the finite element method was used for the flow and strength analysis of aluminum alloy under friction stir welding. The simulations were carried out using Sysweld s/w, and the modeling of the sheet was executed using Unigraphics NX6 s/w. The welding variables for the analysis were the shoulder diameter, rotating speed, and welding speed of the tool. Additionally, a three-way factorial design method was applied to confirm the effect of the welding variables on the flow and strength analysis with variance analysis. From these results, the rotating speed had the greatest influence on the maximum temperature, and the maximum temperature was $578.84{\pm}12.72$ at a confidence interval of 99%. The greater the rotating speed and shoulder diameter, the greater the difference between maximum and minimum temperature. Furthermore, the shoulder diameter had the largest influence on von Mises stress, and the von Mises stress was $184.54{\pm}12.62$ at a confidence interval of 99%. In addition to the increased shoulder diameter, welding speed, and rotating speed of the tool increased the von Mises stress.

박판 블록의 용접 좌굴 변형 해석에 관한 연구 (Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block)

  • 장경복;박중구;양진혁;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

자동차 경량화를 위한 알루미늄 합금의 강변형 가공 및 고능률 용접기술에 관한 동향 (High Efficient Welding Technology of the Car Bodies)

  • 김환태;길상철
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.62-66
    • /
    • 2016
  • The trend of the fabrication technology of high strength, high toughness aluminum alloys by the severe plastic deformation(SPD) process and the welding technology of lightweight alloys in the automobile has been studied. The lightweight aluminum alloys can reduce vehicle weight, while stringently demanding the high quality and efficient welding techniques, to produce the best weldments. Among the production technologies, welding plays an important role in the fabrication of lightweight vehicle structure. This paper covers the scientometric analysis of the severe plastic deformations of lightweight alloys and the welding technology in the automobile which are based on the published research works in the 'HPT, ECAP and rolling', and 'welding technology of the automobile' obtained from Web of Science, and deals with the details of the background data of the HPT, ECAP, and rolling of lightweight alloys, and welding technology of the automobile technology.