• Title/Summary/Keyword: Welding speed

Search Result 815, Processing Time 0.029 seconds

Effects of the Gap and the Speed on the Lap-Joint $CO_2$ Laser Welding of Automotive Steel Sheets (자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 용접속도와 판재간격에 따른 용접특성 연구)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.510-516
    • /
    • 2002
  • Recently the laser welding technology has been applied increasingly for the automotive bodies. But the lap joint laser welding for 3 dimensional automotive body is new while the butt joint laser welding is well known as the tailored blank technology. In this study, the process window was found for the full penetration welding of the lap joint of the 1mm-thick high strength steel sheets. The limit curves and characteristic curves were suggested to define the boundaries and the contour lines in a space of the welding speed and the gap size. The characteristics of the weld sectional geometry were used to determine the limit curves. They are bead width, penetration depth and sectional area. After the observed data was analysed carefully, it was noticed that there was a transition point at which the sectional shape was changed and the bead area jumped as the welding speed was increased. Also a new concept of 'input energy Per volume' was suggested to distinguish the difference at the transition Point. The difference of sectional areas at the transition point can be related to the dynamic keyhole phenomena.

A Study on Adaptive Control to Fill Weld GrooveBy Using Multi-Torches in SAW (SAW 용접시 다중 토치를 이용한 용접부 적응제어에 관한 연구)

  • 문형순;김정섭;권혁준;정문영
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.47-50
    • /
    • 1999
  • The term adaptive control is often used to describe recent advances in welding process control but strictly this only applies to system which are able to cope with dynamic changes in system performance. In welding applications, the term adaptive control may not imply the conventional control theory definition but may be used in the more descriptive sense to explain the need for the process to adapt to the changing welding conditions. This paper proposed a methodology for obtaining a good bead appearance based on multi-torches welding system with the vision system in SAW. The methodologies for adaptive filling control used the welding current/voltage, arc voltage/welding current/wire feed speed combination and welding speed by using the vision sensor. It was shown that the algorithm for the welding current/voltage combination and welding speed revealed the sound weld bead appearance compared with that of the voltage/current combination.

  • PDF

Wire Feeding Speed Control for Improving Welding Performances in Inverter Arc Welding Machine

  • Gho, J.S.;Chae, Y.M.;Chae, J.W.;Mok, H.S.;Choe, G.H.;Shin, W.S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.464-469
    • /
    • 1998
  • In the conventional wire feeder drives of welding machine, one thyristor or MOSFET device was used for half-wave phase control circuit and direct EMF measurement was used for sensing the wire feed rate. But the method using one switching device has poor response for sudden disturbance and it has latent speed ripple. It can affect some welding performance such as spatter generation and irregular bead formming. Therefore, the welding performance using full-bridge PWM speed control scheme was compared with conventional driving scheme was compared with conventional driving scheme and experimented in this paper. The results of experiment confirm the posibility of welding performance improvement by proposed constant speed control scheme in wire feeding drive of welding machine.

  • PDF

High speed key-hole welding by fiber laser (파이버 레이저에 의한 고속 키 홀 용접)

  • Park Seo-Jeong;Jang Ung-Seong;Cheon Chang-Geun;Ju Seong-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.195-197
    • /
    • 2006
  • The present study examined the characteristics of high speed welding thin metal sheet using single mode fiber laser of averaged maximum output power 300 W. Due to the fiber laser that has a good quality of beam can make a very small focusing beam size, thin metal sheet welding and high speed key hole welding can be peformed by high power density.

  • PDF

Study Development of Inveter GMA Welding System using DSP (고속 DSP를 이용한 인버터 GMA 용접시스템에 관한 연구)

  • Park Hyeong-Jin;Hwang In-Seong;Gang Mun-Jin;Lee Se-Heon
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.157-159
    • /
    • 2006
  • This study used by high speed DSP for more developing capability of inverter GMA welding machine. It also is designed by high speed DSP GMA welding system for real time control and improve of welding capability throught the switching frequency control by using of high speed DSP.

  • PDF

A Study on the Friction Stir Welding Characteristics of AZ31 Mg Alloy by the Design of Experiment (실험계획법에 의한 AZ31 마그네슘 합금의 마찰교반용접 특성에 관한 연구)

  • Kang, Dae Min;Park, Kyoung Do;Jung, Yung Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.77-82
    • /
    • 2013
  • In this paper, the design of experiment with two-way factorial design was adopted and from that, optimum values of welding variables including the welding speed and rotation speed were found to improve the strength of AZ31 magnesium alloy sheets joined by the friction stir technique. Tool with shoulder diameter of 12 mm and pin diameter of 3.5 mm was used. Also the welding direction was aligned with the material rolling direction, and dimensions of the AZ31 magnesium alloy sheets were $100{\times}100{\times}2mm$. Conditions of rotation speed were 1000, 1100 and 1200 rpm and those of welding speed were 200, 300 and 400 mm/min. As far as this work is concerned, the optimal conditions for friction stir joint were predicted as the rotation speed of 1200 rpm and welding speed of 200 mm/min.

Mechanical Characteristic Evaluation by Spin Tool of Different Pin Shapes in Friction Stir Welding Al6061-T6 (Al6061-T6의 마찰교반용접 시 회전 Tool Pin 형상에 따른 기계적 특성 평가)

  • Lim, ByungChul;Kim, DaeHwan;Park, SangHeup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.345-349
    • /
    • 2014
  • In this study, an age-hardened 6061-T6 alloy sheet was used, which is commonly utilized for auto parts. The junction strength characteristics in relation to the stirring speed and welding speed were studied in accordance with the friction stir welding rotation of the tool pin. Micro hardness measurements of A type and B type pins, for a welding speed of 400 mm/min and a tool rotational speed 3000 rpm, were obtained as Hv104 and Hv111, respectively. For a welding speed of 200 mm/min and a tool rotational speed of 2000 rpm, we obtained Hv48 and Hv50 for A and B type pins, respectively. Microstructure observation showed that the stirring portion was fine and uniform, which occurred because of its plastic deformation. In the thermomechanically affected zone, partial recrystallization was present because of the plastic deformation. The crystal grains in the heat affected zone were coarsened due to the heat generated by friction stir welding.

The Effects of Joining Factors on Strength of Al 6061 Alloy in FSW (Al 6061 합금의 마찰교반용접 시 접합변수가 강도에 미치는 영향)

  • Kang, Dae-Min;Lee, Dai-Yeal;Park, Kyoung-Do
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.86-91
    • /
    • 2017
  • Friction Stir Welding (FSW) is useful technique to join aluminum alloy with energy efficient and environment friendly. In this paper, the design of experiment with three-way factorial design was adopted for optimum conditions of welding variables in the FSW of Al 6061 alloy. Tools of shoulder diameter of 9, 12, 15 mm and pin length of 1.5 mm were used. Also the material's dimension for welding were $2{\times}100{\times}150mm$, and the tensile specimens were worked by water-jet technique. Welding variables were shoulder diameter, rotating speed and travel speed of tool. From the results of this work, the welding factor influenced on yield strength most was travel speed and the optimum condition for FSW was predicted as the shoulder diameter of 15 mm, welding speed of 500 mm/min and rotating speed of 2,000 rpm. Also the presumption range of yield strength at optimal condition of reliability 99% was estimated to $207.19{\pm}9.91MPa$.

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Design and Output Characteristic of AC Pulse Current for MIG Welding of Ai Sheet (박판 Al MIG 용접용 AC펄스 전류 파형의 설계 및 출력특성)

  • 조상명;김태진;이창주;임성룡;공현상;김기정
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Since new types of vehicles or structures made from thin aluminum alloy are under rapid development and some products are already on the market, welding of aluminium sheet is increasing. MIG(Metal Inert Gas), MIG-Pulse, TIG(Tungsten Inert Gas) welding are the typical Ai welding. MIG welding has the advantage of high speed, but it is difficult to apply to the thin plate, because of bum-through by the high heat input and spatter. MIG-Pulse welding can weld without spatter and burn-through, but when the gap exists at the welding joint, there is quite a possibility of bum-through. TIG welding is difficult to weld at a high speed. AC Pulse welding alternates between DCEP(Direct Current Electrode Positive) and DCEN(Direct Current Electrode Negative). DCEN is higher wire melting rate than DCEP, while lower temperature of droplet than DCEP. In AC Pulse welding, far fixed welding current, wire melting rate increases as the EN ratio increases. For fixed wire feed rate, welding current decreases as the EN ratio increases. Because of these features, the temperature of droplet, the depth of penetration, the width of bead decrease and the reinforcement height increases as EN ratio increases, and these are able to weld at a high speed, lower heat input. It is the purpose of this study that design of AC pulse current waveform for MIG welding of Al sheet and estimation of output characteristic.