• Title/Summary/Keyword: Welding condition

Search Result 866, Processing Time 0.028 seconds

The Experimental Study of Flux Improvement of Wet Underwater Arc Welding Electrode (습식 수중 용접봉의 피복제 개발에 관한 기초연구)

  • Kim, Min-Nam;Kang, Jung-Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.28-36
    • /
    • 1999
  • Wet underwater arc welding process is investigated by using experimentally developed flux coated underwater arc welding electrode and SS400 steel plate of 12mm thickness as base metal. Three kinds of different flux covered wet arc welding electrode of 4mm diameter(BK-01, BK-02, BK-03) are individually developed, and one of the improved underwater welding electrode (BK-03) may be put to practical use for underwater wet arc welding process. The results obtained from this experimental study are as follows : 1. Arc stability of developed underwater wet welding electrode is better than that of the domestic covered arc welding electrode. 2. Workability of welding electrode, remove ability of slag and bead appearances using improved underwater wet welding electrode are remarkably better than that of others. 3. Heat affected zone of test specimen welded in the underwater gets to become a lot smaller than that of test specimen welded in the air, and the maximum hardness of heat affect zone of developed underwater wet welding electrode is lower to that of domestic arc welding electrode.

  • PDF

Effects of Residual Stress with Welding Condition in the Steel Structure of H-beam (H 빔 구조물의 T-Joint에서 용접조건에 따른 용접잔류응력의 영향)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.568-574
    • /
    • 2003
  • In the welding for the steel structure of H-beam with mild steel and 490N/$\textrm{mm}^2$ high tensile steel, we applied the fillet weld mostly and 6-8mm weld length(AISC-spec.). And a new developed metal-cored-wire is used in automatic welding as well as semi-automatic welding. In this study we have attempted to raise the welding productivity and to stabilize the quality on horizontal positions of fillet welding with the following items: - We improved the weld productivity using metal based cored wire with a high deposition rate in the steel structure of H-beam. - We tested the weldability and evaluated the quality of the weldmetal by horizontal fillet $CO_2$ welding. The process is carried out in combination with a special purpose metal-based FCW with excellent resistance to porosity and high welding speed. - We studied the micro structure of the weldmetal by the various welding conditions. - We studied the effect of welding residual stress by the welding conditions in T-joint. Therefore, it can be assured that more productive and superior quality of the weldmetal can be taken from this study results.

Butt 용접부에서 잔류응력이 피로균열성장거동에 미치는 영향에 대한 실험적 연구 1

  • 최용식;김영진;우흥식
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 1988
  • The objective of this paper is to investigate the effect of residual stress on fatigue crack growth behavior. For this purpose, submerged arc welding was performed on SM50A steel plate and post weld heta treatment (PWHT) was followed. Residual stress distribution on the weld plate was determined by a hole drilling method and a series of .DELTA.P-const. and .DELTA.K-decreasing fatigue test were performed on the three different regions, i.e. weld metal, HAZ and base metla. Following conclusins were achieved. 1. In "as welded" specimens, tensile residual stresses were produced in the center portion of the specimen while compressive residual stresses were produced near the edges. In PWHT specimens, however, most of the residual stresses were disappeared. 2. The fatigue crack growth behavior in low .DELTA.K region was considerably affected by the presence of residual stress in both "as welded" and PWHT specimens. 3. Because of the relaxation of residual stresses in PWHT condition, the values of m increased from 2.62-2.78 (in the "as welded" condition) to 3.57-3.91 (in the "PWHT" condition)3.91 (in the "PWHT" condition)condition)

  • PDF

The Study on Inverter DC Resistance Spot Welding Character & Mechanical Property of DP60 Steels (DP60강의 인버터 DC 저항 용접의 용접 특성 및 기계적 성질에 관한 연구)

  • Kim, In-Ju
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.604-606
    • /
    • 2011
  • Purpose This study analyzes resistance spot weldability of DP60 steels. Methodology To compare the resistance spot weldability of DP60 steels, tensile strength test and macro-section test were conducted for the resistance spot welds. Acceptable welding conditions were determined as a function of the resistance spot welding process parameters such as electrode force, welding time, and welding current. The lower limit of the welding lobe was the minimum shear tension strength for 590MPa-grade steel while the upper limit was determined whether or not expulsion was detected. Findings Welding force is 200kgf more appropriate in terms of 300kgf the larger the width of the welding zone. Acceptable welding current condition and welding lobe were changed depending on welding force. Research limitations This study is forced on inverter DC resistance spot weldability of 590Mpa-grade steels for automotive application. Practical implications This study confirms the weldability of DP60 steel by comparing resistance spot weldability depending on welding force. Originality This study analysed resistance spot weldability depending on welding force. wedability of DP60 steel were determined by welding lobes.

  • PDF

Verification of Validity of Governing Factors in High Accurate Prediction of Welding Distortion (용접변형의 고정도 예측을 위한 지배인자의 정당성 검증)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The legitimacy of dominating factor in the high accuracy prediction of welding distortion was investigated for butt welding and fillet welding. When out-of-plane distortion was measured by the experiment objecting to butt welding, if tack welding was easily performed, the position of a neutral axis was variously changed by the irregularity. Then, there have been a case that out-of-plane distortion was generated in the unexpected direction. This case should be especially noted. New model for the experiment was proposed so as to solve this problem. As it was elucidated by the case of fillet welding, it was verified that the analysis should be carried out with satisfying the yield condition (especially at high temperature above 700 degree Celsius) and with closely simulating the penetration shape (heat input in weld metal) in order to solve the proposition that is the high accuracy prediction of welding distortion. It was confirmed that residual stress is highly predicted because welding distortion is highly predicted, too.

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF