• 제목/요약/키워드: Welded structure

검색결과 532건 처리시간 0.024초

용접물성치를 고려한 핵연료 지지격자체 횡방향 충격강도 (Lateral Crush Strength of Nuclear Fuel Spacer Grid Considering Weld Properties)

  • 송기남;이상훈
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1663-1668
    • /
    • 2012
  • 가압경수로 핵연료의 구조부품인 지지격자체는 홈이 있는 격자 스트랩들을 끼우고, 끼워진 교차부위를 용접한 구조물이다. 원자로 비정상 운전중에 원자로의 긴급정지가 가능하도록 하기 위해 지지격 자체는 충분한 횡방향 충격강도를 갖도록 설계되어야 한다. 지지격자체의 횡방향 충격강도 해석에 대한 예전의 연구는 모재의 물성치만을 사용하여 수행되었다. 본 연구에서는 지지격자체 용접부에 모재 물성치를 사용하는 대신 용접물성치를 사용할 경우에 지지격자체 횡방향 충격강도에 미치는 영향을 조사하였다. 계장형 압입시험법으로부터 얻은 용접물성치를 용접부에 적용한 해석을 수행하였고, 그 해석 결과를 예전 연구결과와 비교하였다.

열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가 (Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates)

  • 박재원;이철구
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

부식 강재 복공판의 재사용성 평가에 관한 기초적 연구 (A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage)

  • 김인태;김동우;최형석;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권4호통권56호
    • /
    • pp.170-179
    • /
    • 2009
  • 복공판은 규격화된 강재를 조합하여 용접에 의해 일체화 시킨 것으로 주로 지하작업공간의 확보, 가설 차도 및 보도의 용도로 사용되며, 지하철, 지하상가 등의 건설을 위한 복개부와 가설교량의 상부구조 등에 적용된다. 이러한 복공판이 부식 손상된 경우에는 정량적인 잔존내하력 평가 없이 육안조사에 의한 판별 후 교체 또는 일정기간 사용 후 교체 등으로 그 기능을 유지하고 있다. 이에 본 연구에서는 부식된 복공판의 지속적 사용한계를 확인하고 경제적이고 효율적인 복공판 교체시기를 결정하기 위하여, 실제 지하철 현장에서 사용되고 있는 부식 손상된 복공판을 대상으로 각 구성 강재의 잔존두께를 측정하고, 휨 재하실험을 실시하였다. 그리고 수치해석을 수행하여 그 결과를 실험결과와 비교, 분석하였다. 그 결과 복공판 측, 하판의 두께 감소량과 잔존내하력과의 관계를 분석하여, 부식두께 감소량에 의한 복공판의 적절한 교체주기를 결정할 수 있는 지표를 제시하였다.

Effects of Nb Content and Thermal History on the Mechanical and Corrosion Characteristics of Stainless Steels

  • Choe, Han-Cheol;Kim, Kwan-Hyu
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.117-126
    • /
    • 2003
  • Due to excellent corrosion resistance and mechanical properties, austenitic stainless steel is widely used as the material for chemical plants. nuclear power plants, and food processing facilities. But, the zone affected by heat in the range of 400 to $800^{\circ}C$ during welding loses corrosion resistance and tensile strength since Cr-carbide precipitation like $Cr_{23}C_6$ forms at the grain boundary and thereby takes place the intergranular corrosion. In this study, AISI 304 stainless steel with the added Nb of 0.3 to 0.7 wt% was solutionized at $1050^{\circ}C$ and sensitized at $650^{\circ}C$. Specimen was welded by MIG. The phase and the microstructure of the specimens were examined by an optical microscope, a scanning electron microscope, and a x-ray diffractometer. The corrosion characteristics of specimens were tested by electrolytic etching and by double loop electrochemical potentiokinetic reactivation method(EPR) in the mixed solution of 0.5M $H_2SO_4$ + 0.01M KSCN. The melting zone had dendritic structure constituted of austenitic phase and $\delta$-ferrite phase. Cr carbide at the matrix did not appear, as Nb content increased. At the grain boundaries of the heat affected zone, the precipitates decreased and the twins appeared. The hardness increased, as Nb content increased. The hardness was highest in the order of the heat affected zone>melted zone>matrix. According to EPR curve, as the Nb content decreased, the reactivation current density(Ir) and the activation current density(la) were highest in the order of the melted zone

시뮬레이션을 이용한 노즐플레이트의 구조안전성 (Structural Safety of Nozzle Plate using Simulation)

  • 정종윤;박희성;김준섭
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.186-193
    • /
    • 2018
  • Modern manufacturing industries is to produce both precise and robust mechanical parts without failure while they are in service. In order to prevent a part failure for its lifetime, a mechanical design for a part should be examined on a basis of mechanical simulation. A nozzle plate, being a key part in steam engines, changes flow directions of steam in a turbine used in power plant. This paper is to the design and test for part safety and durability. Currently, nozzle plates are fabricated by welding nozzles to their plates. Welding causes some defects on the used materials while they are being manufactured. Another major defect is un-even pitches between welded nozzles. Welding causes phase changes because of high melting temperature of metal. This leads to decay on the welding spots, which weakens their structural strength and then, may lead to early damages on mechanical structures. This research proposes assembly-typed nozzle plate without welding. From the beginning, nozzle and plate are designed for insertion-typed assembly. Nozzle head and foot are designed in accordance with the grooves on outer ring and inner ring of a plate to make mating surfaces. Then the nozzle plate should be proved for structural and fatigue safety before they are put in manufacturing. This research adopts commercial softwares for modeling and mechanical simulation. The test result shows that the design with smaller mating area and deeper insertion produces higher safety in terms of structure and durability. From the conclusion, this paper proposes the assembly-typed nozzle plate to replace the welding typed.

Flash Butt 용접부의 파괴거동에 관한 실험적 연구(I) (An Experimental Study on the Fracture Behavior for Flash Butt Welding Zone)

  • 김용수;신근하;강동명
    • 한국안전학회지
    • /
    • 제7권1호
    • /
    • pp.65-72
    • /
    • 1992
  • Objective of this research is to evaluate fracture behaviors of fresh-butt welded metal by the acoustic emission technique. The specimens used are medium carbon steel(SM45C), mild steel (SS41) and stainless steel(SUS304), which have different weldability. The similar welding and dissimilar welding processes are considered, in the former SM45C, SS41 and SUS304 are used, in the later the following metals are used SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The characteristics of fracture in weld metal are eshmated by the tension test with nominal speciemns, the fracture toughness test with compact tension specimens and fractography analysis. The results of tension test show for base metals and similar welding materials that the yield strength and ultimate strength of similar welding materials are increased, the elongation of those are decreased. The weldability of SUS304 is better than that of SM45C and SS41 In similar welding materials. Mechanical properties of dissimilar welding mateiiths we lower than those of similar welding materials. In dissimilar welding materials, the weldability of SM45C and SUS304 is better than that of SM45C and SS41, and also weidability of SS41 and SUS304 is better than SS41 and SM45C. Comparing mechanical properties with AE counts, it is found that AE conuts appeared on a small before the limit load of elasticity(P$_{e}$), and apper greatly near yield strength region in tension test. These results could contribute to the safety analyses and the evaluation of strength for welding structure.e.

  • PDF

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

구조응력 및 핫스팟 응력을 이용한 8,100 TEU 컨테이너선 선측 종늑골구조의 피로 강도 평가에 대한 비교 연구 (A Comparative Study for the Fatigue Assessment of Side Shell Longitudinals on 8,100 TEU Container Carrier using Hot Spot Stress and Structural Stress Approaches)

  • 김성민;김명현;강성원;편장훈;김영남;김성근;이경언;김경래
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.296-302
    • /
    • 2008
  • Recently, a mesh-size insensitive structural stress definition (structural stress method) is proposed that gives a stress state at weld toe with a relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. In this study, a fatigue strength assessment for a side shell connection of a container vessel using both the hot spot stress and the Battelle structural stress method was carried out. A consistent approach to compute the extrapolated hot spot stress for design purpose is described and current fatigue guidance is evaluated. Fatigue strength predicted by the two methodologies, e.g. hot spot stress and structural stress approaches, at hot spot locations of a typical ship structure are compared and discussed.

미 용입 십자형 필릿 용접부에서의 피로 수명 특성에 관한 연구 (A Study on Characteristics of Fatigue Life in LOP Cruciform Fillet Welding Zone)

  • 이용복
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.29-34
    • /
    • 2012
  • 모든 구조물의 붕괴 사고로부터 인명과 재산의 손실을 방지하기 위하여 안전 설계 및 안전사용 방법을 찾는 것은 필요하며 피로해석으로부터 피로균열의 초기수명 및 전파수명과 함께 전 피로수명을 평가하는 것은 매우 중요하다. 본 연구의 목적은 교량, 선박, 가스 저장 시설을 포함하여 완전 용입이 어렵고 최종 파괴될 때까지 피로 수명 비를 계산하기 어려운 미 용입 십자형 필릿 용접 구조물에서 잘 나타나는 피로균열이 루트 부로부터 발생할 때 초기수명과 전파수명을 파악하는 것이다. 그 결과 피로파괴에 대한 각 피로수명 비는 재료 두께에 따라 5% 범위의 차이가 있으나 전반적으로 초기수명 비는 34~39% 범위이고 전파수명 비는 61~66%범위로 나타났다.

SM490A의 FCAW 용접 자세별 형상에 관한 기계적 특성 연구 (A Study on the Mechanical Properties of SM490A by FCAW Welding Attitude)

  • 임광묵;이성일
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.7-12
    • /
    • 2019
  • Flux Cored Arc Welding (FCAW), which has been widely used in many industries, was developed in the 1950s to supplement shortcomings of the Shielded Metal Arc Welding (SMAW). FCAW has an advantage in that it can weld regardless of postures and give good quality results in the filed with many different working conditions. In this study, SM490A (rolled steel for welding structural purpose) with different thicknesses (L:25T+R:30T) were welded using FCAW. Then the mechanical properties (tension test, bending test, hardness test, impact test and macro test) were analyzed and the following conclusions were drawn. In the tensile test, it exceeds the KS standard tensile strength range (400~510) in all welding positions, which means there is a problem in the tensile force transmission performance. In the bending test, it was found that most of the specimens did not exhibit surface rupture or other defects during bending test and they exhibit sufficient toughness even after plastic deformation. In the hardness test, all the results were lower than the standard value of 350 Hv of KS B 0893, which means they have good hardness. In the impact test, all results were larger than the KS reference value of 27J. In the macro test, they showed uniform structure state by the shape of the weld, and there was risk of lamination because no internal defects, bubbles, or impurities were found on the surface of the weld.