• Title/Summary/Keyword: Welded part

Search Result 297, Processing Time 0.025 seconds

EVALUATION OF FRICTION WELDABILITY OF TYPE 5052 ALALLOY/LOW CARBON STEEL JOINT.

  • Kim, Kyung-Kyun;Lee, Won-Bae;Yeon, Yun-Mo;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.528-533
    • /
    • 2002
  • The mechanical and metallurgical properties of friction welded joints type 5052 Al alloy/A36 steel have been studied in this paper. The joint strength increased with increasing upset pressure and friction time till it reached the critical value. The joint strength was fixed at low strength compare to that of base metal in the case of increasing friction time. Microstructure of 5052 Al alloy was greatly deformed near the weld interface. The very fine and equaxied grain structure was observed at the near interface. The elongated grain was formed outside dynamic recrystallizatoin region at the peripheral part, while the A36 steel' side was not deformed. The hardness of the near interface was slightly softer than that of 5052 Al alloy base metal. The maximum softening width was about 8mm from the interface. In the present work, the friction welding condition, t$_1$=0.5sec, P$_2$=137.5MPa, showed a maximum joint strength (202MPa) when friction pressure, upset time and rotation speed were fixed at 75MPa, 5sec, 2000rev/min and these were the optimum friction welding condition of 5052Al/A36 steel joints.

  • PDF

End bearing Behavior of Open-ended Steel Pipe Piles Resting on Harden Cement Milk (시멘트밀크 고결체 위에 강관말뚝 선단 매입된 말뚝거동)

  • Park, Young-Ho;Kim, Sung-Hwan;Kim, Nag-Young;Kim, Hong-Jong;Park, Yong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1140-1147
    • /
    • 2010
  • To find the soil plug of steel piles shaped by jet grouting, 4 blocks of cement milk with cube of 1.2m were made. 4 open-ended steel piles on the blocks were rested. The inner end part of 2 the piles was not reinforced. Cement milk 65%(SIG-1) and 100%(RJP-1) were filled into the block and height of 4.2 times of inner the pile diameter respectively. And the other the piles were welded 2 steel ring. The filling of the cement milk was an equal method as before(SIG-2 and RJP-2). Also the strain gauges were installed and the static pile load tests were done at the piles all. As a result, list in great order for effect of soil plug was (1)SIG-1, (2)SIG-2, (3)RJP-1, (4)RJP-2. This is because of strength and filling height of cement milk. And the higher the strength is, the greater the confining coefficient is.

  • PDF

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs

  • Erdal, Ferhat;Tunca, Osman;Ozcelik, Ramazan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Composite beams with corrugated steel webs represent a new innovative system which has emerged in the past decade for medium span in the construction technology. The use of composite beams with corrugated steel webs results in a range of benefits, including flexible spaces and reduced foundation costs in the construction technology. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In the current research, an optimal designed I-girder beam with corrugated web has been proposed to improve the structural performance of continuous composite girder under bending moment. The experimental program has been conducted for six simply supported composite beams with different loading conditions. The tested specimens are designed by using one of the stochastic techniques called hunting search algorithm. In the optimization process, besides the thickness of concrete slab and studs, corrugated web properties are considered as design variables. The design constraints are respectively implemented from Eurocode 3, BS-8110 and DIN 18-800 Teil-1. The last part of the study focuses on performing a numerical study on composite beams by utilizing finite element analysis and the bending behavior of steel girders with corrugated webs experimentally and numerically verified the results. A nonlinear analysis was carried out using the finite element software ANSYS on the composite beams which were modelled using the elements ten-node high order quadrilateral type.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel (ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구)

  • Baek, Jung-Hwan;Choi, Byung-Ky
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

Effects of Different Shielding Gases in Laser Welding of Secondary Ni battery with Multi-thin Plates (이차전지용 니켈 다층 박판의 레이저 용접 보호가스의 영향)

  • You, Young-Tae;Lee, Ka-Ram;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • The demand for the eco-friendly vehicles is skyrocketing because of the increasing $CO_2$ emissions and global warming. In the industrial field, the battery process, a core part of an eco-friendly vehicle, is drawing increased attention; its weight lightening as well as high energy density are becoming increasingly important. In this study, pure Ni plates that were used as the battery pole plate were welded using the laser. The lab joint welding was conducted on ten pure Ni plates at a laser power of 1900 W and a feed speed of 2.8-3.4 m/min. As observed in the experiment, a faster feed speed reduced the bead width, but the laser did not penetrate all ten specimen plates. In addition, pores were trapped when protective gas was used, but they were not trapped when the welding was conducted in atmospheric condition.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.