• Title/Summary/Keyword: Welded joints

검색결과 596건 처리시간 0.031초

구조 응력 기법을 적용한 필릿 용접부 두께 지수 산정에 관한 연구 (A Study of the Thickness Effect using Structural Stress Approach for Fillet Welded Joints)

  • 신문걸;오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.37-42
    • /
    • 2014
  • In this study, non-load-carrying fillet welded joints fabricated using EH grade-steel are evaluated with the structural stress approach. The thickness effect was investigated by a study on welded steel joints with thickness ranging from 25 to 80mm. As-welded joint for main plate thickness of 25 to 80mm, the fatigue strength is reduced gradually. On the other hand, in case of main plate thickness of 25 to 80mm, the structural stress concentration factor increases gradually. As a result, for structural stress approach, thickness effect is not required for correction. Based on these results, a new evaluation fillet welded joint for fatigue design purposes has been proposed FAT 125.

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

SS400 용접부의 피로강도에 미치는 쇼트 피닝의 영향 (Effect of Shot Peening on the Fatigue of SS400 Weldments)

  • 김진헌;구병춘;김현규;정성균
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.895-901
    • /
    • 2009
  • 철도 차량 대차 프레임은 주로 용접을 이용하여 제작되고 있는데 용접부에서의 피로파괴는 늘 문제가 되어왔다. 용접부의 피로강도를 향상시키기 위한 여러 방법 중 본 연구에서는 쇼트 피닝을 적용하였다. 철도 구조물에 많이 사용되는 소재의 하나인 SS400 판재를 이용하여 용접시편을 만들어 쇼트 피닝과 후열처리 유무에 따른 피로특성을 분석하였다. 피로시험결과에 의하면 쇼트 피닝은 피로강도를 향상시키는데 매우 효과적이었고 후열처리는 피로강도를 도리어 저하시키는 것으로 나타났다.

고강도강 맞대기 용접 시험편의 루트갭 변경에 따른 피로강도 평가 (Fatigue Assessment of High Strength Steel with Butt Welded Joints for the Root Gap Difference)

  • 김호정;강성원;김명현
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, a series of fatigue tests was conducted to evaluate fatigue strength for the root gap difference with high strength steel with butt welded joints. A finite element analysis using effective notch stress method was also performed to compare effective notch factors each other with butt welded specimens made by copper backing. The results of fatigue tests were classified according to the root gap difference. Fatigue life of butt welded specimens is presented for determining the root gap of high strength steel with butt welded joints in terms of fatigue strength. Then effective notch stress was applied to interpret fatigue strength of butt welded specimen model which is reflected actual measured dimensions. As a result, fatigue strength of high strength steel with butt welded specimens is increased by root gap gets longer in length.

알루미늄 철도차량 차체 용접부의 강도 특성에 관한 연구 (A study on the strength characteristics of welded joints in aluminum carbody of rolling stock)

  • 서승일
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.290-292
    • /
    • 2004
  • In this paper, static and fatigue load tests for the specimens, components and carbody were carried out to investigate the strength of welded joints in aluminum rolling stock. Tensile load test results showed that the static strength of welded joint for heat-treated alloys is reduced significantly and fatigue strengths are scattered by the welding imperfections. Component and whole carbody fatigue test results showed agreements with the design fatigue strength standards for specimens of same joint detail. Test results revealed that full penetration welding and strict management of welding procedure are crucial for securing strength of welded joint in aluminum carbody.

  • PDF

정용접이음재의 피로수명 예측에 관한 확률적 검토(I) : Weibull 확률 분포함수 적용 (Statistical Investigation of Fatigue Life Prediction of the Spot Welded Lap Joint(I) : Application of Weibull Probability Distribution Function)

  • 손일선;백동호
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.214-221
    • /
    • 1999
  • Spot welding is very important and useful technology in fabriaction of the thin sheet structure such as the automobile, train and air craft, Because fatigue strength of the spot welding point is however considerably lower than base metal due to stress concentration at the nugget edge, reasonable fatigue strength evaluation of spot welded lap joint is very important to estimate the reliability and durability of th spot welded structure and to establish a criterion of ling life fatigue design. For reasonalbe fatigue strength evaluation, it is necessary to estimate the fatigue strength of spot welded lap joints, systematically. So far, many investigators have numerically and experimentally studied on the systematic fatigue strength estimation for various spot welded lap joints, and the methods suggested has been considerably accumulated. By the way, for applying them in practical fatigue design of the thin sheet structure fabricated by spot welding ,it is also necessary to verify their efficiency and reliability on the predicted results, Therefore, in this study, a statistical fatigue strength estimation method for spot welded lap joints was developed by using the Weibull probability distribution function. From the result, it was found that fatigue strength and fatigue life of the spot welded lap joints having various dimension were able to be statically predicted . And also, a reliable criterion for long life fatigue design of the spot welded lap joint could be established.

  • PDF

응력확대계수를 이용한 하중 전달형 필릿 용접부의 피로강도 평가에 관한 연구 (A Study on the Fatigue Life Assessment for Load-carrying Fillet Welded Joints using Stress Intensity Factor)

  • 김명현;강성원;김형래
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.97-102
    • /
    • 2008
  • It is well known that there exist two typical fatigue crack initiation locations in ship structures: one is the weld toe and the other is the weld root where partial penetration weld is performed. In particular, it is important for fillet weldments to avoid weld root cracking in order to prevent catastrophic failure particularly in ship structures. Therefore detail considerations are required for cruciform joints with partial penetration when there is a possibility of weld root crack initiation. For these reasons, fatigue tests on welded joints were performed in this study. Concept of stress intensity factor(SIF) by means of fracture mechanics is applied for predicting fatigue life of fillet welded joints.

HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(1) (A Study on fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(I))

  • 서창민;서덕영;이동재
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.918-928
    • /
    • 1995
  • This paper deals with the various mechanical properties and fatigue strength in the FRW1 (friction welded interface) of high speed steel (HSS-Co) to SM55C through the tensile test, hardness test and fatigue test. The data of FRW specimens are also compared with those of the base materials (HSS-Co and SM55C steel). Three kinds of specimens used in this study are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. It is confirmed that the applied welding conditions are optimum methods in order to minimize the heat affected zone (HAZ) and hardness distribution at the HAZ. The fatigue strengths at N = 10$^{6}$ cycles of smooth, circumferential notch and saw notch specimens in the FRW joints are about 299.2 MPa, 123.8 MPa and 247.5 MPA, respectively. The fatigue strength of the friction welded joints is almost equal to that of the SM55C carbon steel in the optimum welding conditions. The fatigue cracks initiated at the welded zone are propagated along the side of SM55C steel.

최대응력을 이용한 STS301L 다중접합 점용접 이음재의 피로해석 (Fatigue Analysis of Spot-welded Multi-Lap Joint of STS301L Using the Maximum Stress)

  • 남태헌;정원석;배동호
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.101-107
    • /
    • 2003
  • Since stainless steel sheets have good mechanical properties, weldability, appearance and corrosion resistance, they are commonly used as one of the structural materials of the railroad cars or the commercial vehicles which are manufactured by the spat welding. Among the many kinds of spot welded lap joints, it can be found that multi-lap joints are employed in their body structure. But, fatigue strength of these joints is lower than that of base metal due to high stress concentration at the nugget edge of spot weld and is considerably influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic design criterion for the long life design of the spot-welded body structures. In this paper, the stress distribution and deformation around the spot-welded multi-lap joints subjected to tensile shear load was numerically analyzed. Also, the $\Delta$P-Nf curve was obtained by fatigue tests. Using these results, $\Delta$P-Nf curves were rearranged in to the ${\Delta}{\sigma}$-Nf relation with the maximum stress at nugget edge of spot weld.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.