• Title/Summary/Keyword: Welded T-joint

Search Result 98, Processing Time 0.023 seconds

A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint (T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구)

  • Gang, Seong-Won;Lee, Tae-Hun;Jeon, Jae-Mok;Kim, Chung-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

A Study on Bending Fatigue Strength of One Side Fillet Welded T-Joint by SM 490A steel (Sm 490A강으로 제작된 T형 편면용접이음재의 굽힘피로강동에 관한 연구)

  • 엄동석;강성원;이태훈;이해우;조수형
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.134-141
    • /
    • 1998
  • In this study, a fillet size for bending fatigue strength of one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by bending fatigue test with or without edge preparation and burn through, with variation of joint shape. As a result, the following conclusions were obtained. (1) In one side fillet welded T-joint, the larger the leg length, the greater the bending fatigue strength. The increase in bending fatigue strength. (2) One side filet welded T-joint with edge preparation showed higher bending fatigue strength than that with twofold-large leg length and without edge preparation. (3) In one side fillet welded T-joint without edge preparation, both manual welding and automatic welding were carried out with same condition. In this case, automatic welding shoed deeper penetration and more increased horizontal leg length than manual welding, so that automatic welding offers grater bending fatigue strength. (4) For one side fillet welded T-joint without edge preparation, the ratio(h/t) of the leg length (h) and the main plate thickness (t) in which toe crack can occur was 1.2 over. (5) In one side fillet welded T-joint with edge preparation, the burn through led to reduced bending fatigue strength. However, this bending fatigue strength was higher than that of one side fillet welded T-joint without edge preparation and with a larger leg length.

  • PDF

Design of Welded Joints Using Stress Intensity Factors (응력확대계수를 이용한 용접이음부 설계 연구)

  • Park, Ji-Woo;Gu, Man-Hoi;Choi, Chang;Sung, Wan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1058-1062
    • /
    • 1996
  • The assessments of weld defects by fracture mechanics are performed for design of welded Joints. In general, butt, T-type, and L-type welded joint are useful for welding structure. When linear weld defects are in welded joint, stress intensity factors for each joints are calculated by finite element method. Analysis results are shown for the fracture modes and characteristics of joint types. And they are founded for the weaken order of welded joints being T-type, butt, L-type.

  • PDF

A Study on the Production Mechanisms of Residual Stress in Welded T-joint of Steel Pipe Member (T형 강관 용접 이음부의 잔류응력 생성기구에 관한 연구)

  • 장경호;장갑철;경장현;이은택
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2003
  • Steel members have advantages of resisting torsion and axial compression. In design, residual stresses at the welded joint of T-shape steel pipes are one of the most important points to be considered. In this paper, characteristics of residual stresses of welded joints are clarified by carrying out 3D non-steady heat conduction analysis and 3D thermal elastic-plastic FE-analysis. According to the results, the production mechanism of residual stresses at the welded joint of T-shape steel pipe is clarified. In this paper, circumferential stresses depended on thermal histories but axial and radial stresses were more dependent on geometrical shape than thermal histories. Residual stresses in the axial direction on the lower part of pipe member were tensile, controlled by geometrical shape. However, in case of middle part, residual stresses in all the directions were controlled by thermal histories.

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint (T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구)

  • Bang, Han-Seo;Kim, Jong-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

A Study on the Mechanical Mechanism According to the Groove Shape of T-welded Joint (T-joint 용접부의 형상에 따른 역학적 메카니즘에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.53-61
    • /
    • 1999
  • The use of thick plate in increasing in recent years due to the rapid expansion of chemical plants, nuclear plants, ships and other industrial plants. Welding is the most popular joining techniques employed in manufacturing industrial machineries and structures. Normally, Groove shapes are prepared according to appropriate rules and regulations such as KS, JIS, AWS, LR, DNV and etc. for various thicknesses of plate. However those groove angles tend to be too large. As a result of large groove angle, residual stress, deformation of material and strength reduction is obtained. Therefore, the reliability and safety of structures and machinery tend to be decreasing. Therefore, in this paper, theoretical as well as experimental study are carried out to find optimum groove shapes for T-welded joint of mild steel. The test specimen are made in same condition with simulation model. Welding residual stresses measurement by sectional cutting method. ⅰ) The mechanical difference for change the thickness of plate and groove angle are not appeared. ⅱ) In a mechanical point of view minimum preparation angle(40°) is more suitable than maximum groove angle(60℃). ⅲ) The measurement value and distribution of welding residual stresses are not effected largely by groove angle. It is mechanical restraint that mainly affect welding residual stresses distribution. In mechanical point of view minimum groove angle is more suitable than maximum groove angle. Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Fatigue Characteristics on Welded Joint of Gear Box-Shank in Vibro Ripper for Rock Crash (암반 파쇄용 진동리퍼 기어박스-생크 용접부의 피로특성)

  • Oh, K.K.;Kim, Jaehoon;Kim, Y.W.;Park, J.Y.;Yang, G.S.;Park, J.W.;Kim, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.28-33
    • /
    • 2014
  • Vibro ripper worked by high frequency vibration is developed to do rock fragmentation and work of ripper is the different concept with other existing breakers. The gear box-shank welded joint of vibro ripper is very important part to deliver vibromotive force to tooth, so this part should endure high frequency vibration environments. The purposes of this study are to choose the optimal welding conditions for fatigue strength. The conditions were made using three kind of shank materials and two kind of filler metals. Shank materials are Hadox-hituf, Posten80 and AR400, and filler metals are CSF-71T and CSF-81T. The fatigue test was conducted each condition. Fracture surface was observed to estimate fracture characteristics of welded joint using SEM.