• Title/Summary/Keyword: Welded Pressure Vessel

Search Result 38, Processing Time 0.021 seconds

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

Design of the Vacuum Vessel for the KT-2 Project

  • S.R.In;Yoon, B.J.;S.H.Jeong;Lee, B.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.438-442
    • /
    • 1996
  • The design of the vacuum vessel of KT-2(a large-aspect-ratio, mid-size tokamak) is presented. The KT-2 vacuum vessel provides necessary environments to contain a plasma of double-null configuration with elongation of up to 1.8. The vacuum vessel is designed as an all-metal welded structure. Eddy currents are induced on the vessel during all stages of the plasma operation. Influences of the continuous vessel on the plasma were investigated. No significant effect of the vessel on the plasma in every aspect of null formation, plasma initiation, plasma control was found. Stresses and deformations in the vessel by atmospheric pressure and electromagnetic forces due to the eddy currents were calculated using 3D FEM code.

  • PDF

Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint (콜드 스트레칭 STS 304강 용접부의 저온피로균열진전 특성)

  • Lee, Jeong Won;Na, Seong Hyeon;Yoon, Dong Hyun;Kim, Jae Hoon;Kim, Young Kyun;Kim, Ki Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.809-815
    • /
    • 2017
  • STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and $-170^{\circ}C$ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

An Experimental Study on Confined Steel Structure Blasting Demolition (폭약을 이용한 밀폐압력용기 해체에 관한 기초적 실험연구)

  • Lee, Ha-Young;Kim, Yong-Kyun;Yang, Kuk-Jung;Hur, Won-Ho;Kang, Dae-Woo
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2012
  • The Demolition blasting has been applied for buildings and structures so far. In this study, however, a confined vessel blasting filled with water has been focused. A small amount of explosives were placed in a sealed vessel with water, perfect elastic body, supposed as a relay agent in it, and the blasting aspect was observed. Blasting pressure was standardized by Abel's equation of state. In result, if there was a relay agent in it, the pressure vessel was torn apart with smaller power than its tensile strength. If there was not, it needed 7.1~8.5 times as much power as the previous one, and the blasting pressure had not also affected the demolition and it had gone or vanished until it reached a certain point, In terms of pressure vessel made by steel, the elastic-plastic failure was took a place, and the first yield point happened along the welded area as a form of heating plastic failure we thought.

AE Source Location and Evaluation of Artificial Defects (입공결함(人工缺陷)에 의한 AE발생원(發生原) 위치표정(位置標定)과 신호해석(信號解析))

  • Moon, Y.S.;Jung, H.K.;Joo, Y.S.;Lee, J.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.2
    • /
    • pp.22-33
    • /
    • 1986
  • The application and development of on-line monitoring technology of AE to surveillance of crack propagation will contribute to the structural integrity of reactor pressure vessel and piping system. This research has been performed in order to obtain the evaluation technology for source location of AE and the analysis for the AE signal of the welded specimen. AE is detected by 4-channels AE system during pressurization in small pressure vessels. The cracking of artificial defects can be accurately located and categorized in real time. The welded specimens have more events rate and higher amplitude than the weldless less specimens, and the events rate have a peak around the yield point and just before the failure under tensile test.

  • PDF

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

Finite Element Analysis and Development of Interim Consolidated 5-N Curve for Fatigue Design of Welded Structure (용접구조물의 피로설계를 위한 유한요소 해석 및 통합 피로선도 초안 개발)

  • Kim, Jong-Sung;Jin, Tae-Eun;Hong, Jeong-Kyun;P. Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.724-733
    • /
    • 2003
  • Fatigue design rules for welds in the ASME Boiler and Pressure Vessels Code are based on the use of Fatigue Strength Reduction Factors(FSRF) against a code specified fatigue design curve generated from smooth base metal specimens without the presence of welds. Similarly, stress intensification factors that are used in the ASME B3l.1 Piping Code are based on component S-N curves with a reference fatigue strength based on straight pipe girth welds. But the determination of either the FSRF or stress intensification factor requires extensive fatigue testing to take into account the stress concentration effects associated with various types of component geometry, weld configuration and loading conditions. As the fatigue behavior of welded joints is being better understood, it has been generally accepted that the difference in fatigue lives from one type of weld to another is dominated by the difference in stress concentration. However, general finite element procedures are currently not available for effective determination of such stress concentration effects. In this paper, a mesh-insensitive structural stress method is used to re-evaluate the S-N test data, and then more effective method is proposed for pressure vessel and piping fatigue design.