• Title/Summary/Keyword: Welded Beam

Search Result 312, Processing Time 0.025 seconds

The Welding Residual Stress and Fracture Toughness Characteristics of HT50 Laser Welded Joint (고장력강(HT50) 레이저용접부의 용접잔류응력 및 파괴인성 특성)

  • Ro, Chan-Seung;Bang, Hee-Seon;Bang, Han-Sur;Oh, Chong-In
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.71-76
    • /
    • 2007
  • Recently, many industries have been employing the application of laser beam welding, due to the resulting high welding quality, such as smaller width of melting and heat affective zone, smaller welding deformation, and fine grains of weldment, compared to arc welding. However, in order to appropriately utilize this welding process with steel structure, the characteristics of welding residual stresses and fracture toughness in welded joints are to be investigated for reliability. Therefore, in this study, the mechanical properties of weldments by arc and laser welding are investigated using FEM to confirm the weldability of laser welding to the general structural steel (HT50). The Charpy impact test and 3-points bending CTOD test are carried out in the range of temperatures between $-60^{\circ}C\;and\;20^{\circ}C$, in order to understand the effect on the fracture toughness of weldments. From the research results, it has been found that the maximum residual stress appears at the center of plate thickness, and that the fracture toughness is influenced by strength mis-match.

Relief Hole for Improvement of Fatigue Strength in Welded Intersections of Transverse and Longitudinal Ribs in Orthotropic Deck (가로리브와 U리브 용접부의 피로강도 향상을 위한 응력완화홀)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Yang, Keon Bong;Kim, Kyoung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.419-430
    • /
    • 2014
  • On going researches which are being made on the welded joints at the intersections of closed ribs such as U-ribs with floor-beams in ortho-tropic steel decks still have been used the shape of scallops with or with not diaphragm inside. Stress Relief Hole(SRH) being presented in this study was investigated in order to reduce the fatigue damage in the intersections of U-rib with floor-beam. Finally, it is verified that circular SRHs sufficiently relief the concentration stress at the intersections of U-rib with floor-beam and shows that SRH can be offer one of the methods that can prevent the fatigue damage in these structural details.

A Study of Nd:YAG Laser Welding in Cold-reduced Carbon Steel and Stainless Steel Sheet (Nd:YAG 레이저를 이용한 냉연강판과 스테인레스강판의 용접)

  • Lee, Chul-Ku;Lee, Woo-Ram;Baek, Un-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2010
  • We have studied on welding dissimilar materials of cold-reduced carbon steel sheet and stainless steel sheet together by using laser beam. It is well known that stainless steel is so strong againt rust and heat, while cold-reduced carbon steel is widely used in various parts of industry. In this research we have performed some experiments to know the possibility of welding dissimilar materials using laser beam by adjusting the power output of 3kW laser. Other conditions of the experiments were as follows : the welding speed was varied in the range between 2m/min and 7m/min, argon gas and helium gas were used as shield gas, the flow value of shield gas was ranged between $10{\ell}/min$ and $30{\ell}/min$, and the gap of two materials was ranged between 0mm and 0.3mm. In order to ascertain of the welded surface, we have done the tensile strength testing, the hardness testing and the microscope observation. As a result, we have found that tensile strength was the highest at the condition of the welding speed of 4, the flow value of $20{\ell}/min$, the gap of two materials 0, and the use of helium gas. Above testings have also showed that the tensile strength was generally satisfactory since the penetration of welding was almost complete due to the thinness of the materials. In addition, the formation of the welded area was excellent when it had the highest tensile strength.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

An Experimental Research to Evaluate Structural Capacity of Pre-stressed Concrete Beam connected with Embedded Steel Plate (강판으로 접합된 프리스트레스트 콘크리트보의 구조성능 평가를 위한 실험연구)

  • Lee, Kyoung-Hun;Kim, Jeom-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.27-33
    • /
    • 2010
  • In this study, a monotonic loading test to estimate structural capacity of 12 meter long full scale precast pre-stressed concrete beam specimen was performed with a 2,000 kN dynamic actuator. A couple of embedded steel plate was installed at the ends of the beam and specimens were connected to steel girder frame with high tension bolts. Nominal compressive strength of pre-stressed concrete beam and slab were 50 MPa and 24 MPa respectively. Two HD25 tensile steel reinforcements were welded on vertical plate of embedded steel plate. Pre-stressed concrete beam specimen was loaded by displacement control method with a certain loading pattern which was repeated loading and unloading with 10mm increment displacement. About 88.34%, 86.97% and 66.83% of displacement restoration ratios were evaluated at elastic, inelastic and plastic behavior region of specimen respectively.

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

Flexural Capacity of the Encased(Slim Floor) Composite Beams with Web Openings -Deep Deck Plate and Asymmetric Steel Beam to be Welded Cover Plate- (매립형 (슬림플로어) 유공 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Kwak, Myong Keun;Heo, Byung Wook;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.575-586
    • /
    • 2004
  • This paper presents an experimental study on the flexural capacity of an encased(slim-floor) composite beam, which is a wider plate under bottom flange of H-beam with web openings. Five simple full-scale bending tests were conducted on the encased(slim-floor) composite beams at varying steel beam heights (250mm and 300mm), positions of web openings, and loading conditions. The test results revealed that the web-open encased composite beam had sufficient composite action, without any additional shear connection devices, because of the inherent shear-bond effects between the steel beam and the concrete, and a stable structural performance without web-opening reinforcements.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam (U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kang, Jae Yoon;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.

Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis (3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계)

  • Kim, Sun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.166-172
    • /
    • 2019
  • A case study was performed in order to develop well-designed of thin plate door impact beam. The conventional impact beam was consisted of steel-pipe welded two brackets on the both side, which causes low productivity and high cost. In order to overcome those disadvantage, it is necessary to develop a new type of door impact; thin plate impact beam. The thin plate impact beam was not needed a welding procedure, which can lead low cost and high productivity. In order to maximally resist from an external force, the cross-section design should be well designed. 6 different cross-section design were proposed based on engineer's experience. Three point bending test was simulated those 6 different impact beam and compared the reaction forces. Among them, one case was chosen and redesigned for detail design.