• Title/Summary/Keyword: Weld residual stress analysis

Search Result 180, Processing Time 0.019 seconds

Distribution of Welding Residual Stresses in T-joint Weld with Root Gap (루트부 갭이 있는 양면 필릿용접 이음부의 용접잔류응력 분포)

  • H.S. Bang;S.H. Kim;Y.P. Kim;C.W. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.81-88
    • /
    • 2002
  • The root joint in the welding structures are apt to failure by the stress concentration which is occurred by the external force. Therefore, in the safety and reliability of structure, the complete penetration joint welding which are obtained by the groove welding with edge preparation is generally required. Nevertheless, fillet T-joint welding without edge preparation is often carried out in the fields to reduce working time and consumption of welding electrode, however, this process is likely to produce inadequate joint penetration such as root gap. In this paper, the focus of research is to investigate distribution of welding residual stresses in the plate(or flange) and web of T-joint weld, and especially in the near of root gap notch that is due to incomplete joint penetration. For the analysis, we have chosen model of T-joint weld in the cases of single and multi-pass welding with submerged arc welding and analyzed model by using finite element programs considering the heat conduction and thermal elasto-plastic theory.

TIG Welding Characteristics of Stainless Steel by Design of Experiment (실험계획법에 의한 스테인레스강의 TIG용접특성)

  • Chung, Joong Gyo;Park, Kyoung Do;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.106-111
    • /
    • 2014
  • Welding is very popular method for joining two or more metals. However, welding causes residual stress and distortion and these give a bad influence to the structure strength. In this paper, TIG welding technique was performed to investigate the joint characteristics of AISI321 steel. For its evaluation, the orthogonal array method and variance analysis were applied with three factors of electric current, travel speed and argon gas and also three levels of each factor to tensile tests for optimum design. From the results, the increaser weld speed the narrower bead width and the lower weld penetration. The increaser electric current the brighter argon gas and the wider bead width. Also weld speed influenced most on the tensile strength and presumption range of tensile strength at optimal condition from reliability 95% was estimated to $635.02{\pm}14.64$. In addition the increaser weld speed and electric current the fracture occurred around bead vicinity.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

Evaluation of the Stress Occurring Phenomenon for Cold-Rolled Carbon Steel During a Laser Welding Process (냉연 압연 강판의 레이저 용접 공정 시 발생하는 응력 평가)

  • Lee, Chulku;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Residual stress caused in the weldments with high restraint force are often observed during welding in the weldments of Inner and outdoor materials or radial tanks. The reason is that quantitative analysis about thermal stresses during laser welding is lacking for this weldments. To verify Finite Elements Method (FEM) theory, the temperature was measured with thermocouple in a real time in this paper. Also analysis of the thermal stress for welding condition is performed by Comsol program package on various welding condition in SCP1-S butt welding. The principal stress in laser welding process is seen through the width direction. Also, it was confirmed that a change in base metal by thermal expansion made the stress in width direction stronger. Base metal close to the weld bead as the process progresses to the tensile stress in the compressive stress was varied. It was shown that the change of stress was quantitative from the bead at a certain distance.

Examination on the Mechanical Behavior of Hybrid Laser-MIG Weld (하이브리드 용접부의 역학적 거동 규명)

  • O, Jong-In;Park, Ho-Gyeong;Bang, Han-Seo;Bang, Hui-Seon;Seok, Han-Gil
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.243-245
    • /
    • 2005
  • Recently many research are going on in the field of application of Laser-Arc hybrid welding for superstructures such as shop-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using previous numerical analysis which is used to calculate the heat source for hybrid welding has been analyzed.

  • PDF

Fininte element analysis of electron beam welding considering for moving heat source (이동 열원을 고려한 전자빔 용접의 유한요소해석)

  • Cho, Hae-Yong;Jung, Seok-Young;Kim, Myung-Han;Cho, Chang-Yong;Lee, Je-Hoon;Seo, Jung
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H) (초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과)

  • Ahn, Jong-Seok;Park, Jin-Keun;Lee, Gil-Jae;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.