• Title/Summary/Keyword: Weld quality assessment

Search Result 9, Processing Time 0.02 seconds

Weld Quality Assessment Method for Short-Circuit Mode in GMAW

  • Kim, J.M.;Yoo, C.D.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • A weld quality assessment method is proposed in this work, which can be applied to the short-circuit mode in GMAW. Information about the welding signal trajectory, distribution of the signal duration at each sub-regions and short-circuit frequency is used to evaluate the weld quality. The weighted penalty, which is determined experimentally, is imposed for each abnormal signal. Performance of the proposed method is compared with the Simpson's method under the conditions of shielding gas reduction, workpiece surface contamination and joint gap in the butt and fillet welds. Although the proposed method predicts the weld quality with reasonable accuracy, further modification and extension to other metal transfer modes are needed as a further study.

  • PDF

In-Process Monitoring of Micro Resistance Spot Weld Quality using Accelerometer (가속도계를 이용한 마이크로스폿용접의 인프로세스 모니터링)

  • Chang, Hee-Seok;Kwon, Hyo-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study is to propose an in-process monitoring system for micro resistance spot welding processes using minute accelerometer. A minute accelerometer is mounted on the upper moving electrode tip holder. With its high sensitivity and frequency response characteristics, accelerometer output signal has been successfully recorded and integrated twice to reflect electrode expansion during micro spot welding processes. The analysis of electrode expansion pattern was attempted to find its correlation with spot weld quality. Major previous findings1-6) regarding spot weld quality assessment with the electrode expansion signal in large scale resistance spot welding processes were proved to be true in this in-process monitoring system.

A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position (GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, In-Ju;Kim, Ill-Soo
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

An Assessment of the Accuracy for Digital Radiography Image (디지털 방사선투과영상의 정밀성 평가에 관한 연구)

  • Park, Sang-Ki;Ahn, Yean-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • Film based radiography imaging technique has been applied to the non-destructive test in medical, aircraft, and power industries contributing to the development of the industries. However, the complex process for imaging and analysis has increasingly demanded the reformation of the radiography test. A digital radiography imaging technologies has been com out from the demand. This study was mainly focused on the assessment on the accuracy for the each image from digital radiography test and film radiography test was proven to crate a better image in sensitivity than film radiography test. In the IQI(Image quality indicator) transmission test, one or two more line can be seen in digital image than in film image. When applying to the boiler tube weld, film image is detectable to the 1.0mm depth flaw; and digital image to the 0.5mm depth flaw. As a result of this study, digital radiography technology is determined to enhance the image quality, compared to film radiography technologies

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality (초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network (인공신경망을 이용한 이면비드 예측 및 용접성 평가)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF