• Title/Summary/Keyword: Weld growth

Search Result 193, Processing Time 0.031 seconds

Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향)

  • Jeong, Yeui-Han;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.

Time-dependent Crack Growth in X20CrMoV 12 1 Steel Weld joint (X20CrMoV 12 1 강의 용접부에서의 균열진전 특성연구)

  • Lee, N.W.;Kim, K.S.;Chung, Y.K.;Park, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.322-327
    • /
    • 2000
  • This paper investigates the time-dependent crack growth in X20CrMoV 12 1 steel weld joints. Crack growth test are carried out $545^{\circ}C$ on side-grooved 1/2T CT specimens under static loads. A simulated material is produced for the intercritical HAZ, where fracture normally occurs. Constitutive properties are obtained for the simulated HAZ material as well as for the base metal and weld metal. Finite element analyses of crack growth are performed on the models with and without a HAZ layer, using the experimental crack length-time history. The inclusion of HAZ layer increase the load line velocities significantly. The crack growth rates are correlated reasonably well with $C^*$. The smallest crack size for the validity of $C^*$ is found much smaller than the ASTM crack initiation size for 1T CT specimen of creep ductile materials.

  • PDF

Effects of PWHT on Weld Metal Properties of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460 MPa 강재의 용접금속 특성에 미치는 PWHT의 영향)

  • Kang, Chang-Yong;Jeong, Sang-Hoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • This paper has an aim to study the effect of PWHT(for 140min. at $600^{\circ}C$) on FCAW weld metal properties (tensile, charpy impact and CTOD value) of YS 460 MPa steels for ship and offshore structures. On the basis of these study, it was found that strength was decreased and elongation was increased by PWHT. These phenomenon resulted from the reduction of acicula ferrite volume fraction by grain growth. Also, Charpy impact and CTOD value were decreased by PWHT. These phenomenon resulted from grain growth. Because the grain boundary grown by PWHT can play a role as crack initiation site and make the crack propagate more easily. Although weld metal properties were decreased by PWHT, tensile and impact properties could meet the class societies requirements for welds of YS 460 MPa steel, but decrease of fracture toughness need to be consider seriously.

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Effect of Preemptive Weld Overlay on Residual Stress Mitigation for Dissimilar Metal Weld of Nuclear Power Plant Pressurizer (예방 용접 Overlay가 원전 가압기 이종금속용접부 잔류응력 완화에 미치는 영향)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Chun, Yun-Bae;Oh, Chang-Young;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.873-881
    • /
    • 2008
  • Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a preemptive weld overlay(PWOL). In pressurized water reactor(PWR) dissimilar metal weld is susceptible region for primary water stress corrosion cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

Fatigue Creak Growth Properties of Welded Joint for the Railway Bridge Steel (철도교량(鐵道橋梁)의 용접부(鎔接部)에서 피로(疲勞)균열의 성장특성(成長特性))

  • Chang, Dong Il;Yong, Hwan Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-136
    • /
    • 1984
  • In the weled structures, fatigue fracture mainly depends upon crack growth behavior. Specially anisotropy of crack growth orientation and welding direction become important factor of fracture in the welding jone. When fatigue stressed steel welded with nonfatigue stressed steel, at the low stress intensity factor range, residual stress become more important factor of growth behavior then properties of base metal but when the crack growth in the weld metal, toughness of weld metal become the most important factor. Especially nonhomgeniety of toughness for the weld metal make more scatter the relations of $da/dN-{\Delta}K$.

  • PDF

Fatigue crack growth behaviors of SA508 Gr.3 Cl.2 base and weld material in 290℃ water environment (SA508 Gr.3 Cl.2 저합금강과 용접부의 290℃ 수화학 환경에서 피로균열거동 분석)

  • Cho, Pyungyeon;Kim, Jeong Hyeon;Jang, Changheui;Cho, Hyunchul
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • The fatigue crack growth behaviors of SA508 Gr.3 Cl.2 low alloy steel in high temperature water environment were investigated. Overall, weld metal showed similar crack growth rate as that of base metal. At 0.01 Hz, fatigue crack growth rate (FCGR) was higher than that in air while the difference was smaller at 0.1 Hz. Also, FCGR showed ${\Delta}K$ dependency at 0.1 Hz only, indicating that the environmental effect was much greater at slower loading frequency of 0.01 Hz. FCGR of SA508 Gr.3 Cl.2 low alloy steel was compatible to or smaller than the ASME Sec. XI fatigue reference curves in high temperature water environment.

海水環境에서 鋼 熔接部의 環境强度評價에 關한 硏究 II

  • 나의균;임재규;조규종;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1989
  • The purpose of this study is to investigate the corrosion fatigue crack growth of PWTHT specimens(SS41, SM53B) which are the compact tension ones extracted from the muti-passed weldment and weld block. The corrosion fatigue test was done at the cyclic stress frequency of 3Hz in 3.5% NaCl solution. The results are as follows. 1. Corrosion fatigue crack growth of as-weld was slower than that of base metal. 2. In the low .DELTA.K region, the effect of corrosion environment on crack growth was obvious. However, the corrosion effect decreased with the .DELTA.K slowly. 3. The behaviour of fatigue and corrosion fatigue crack growth depended on the material, heat treatment as well as experimental conditions. 4. Corrosion fatigue crack growth of PWHT specimens(SS41, SM53B) subjected to 1/4hr, was increased compared with that of as-weld. 5. There was a tendency that the exponent value(m) obtained in 3.5% NaCl solution was decreased in comparison with that in air, and the material constant(C)was increased for Paris equation, da/dN=C((.DELTA.K))$^{m}$ , compared with that in air considerably.

  • PDF

A Study of Residual Stress Measurement in the Weld of Nuclear Materials (원전재료 모재 및 용접부 잔류응력측정 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Keun;Lee, Seong-Ho;Park, Jae-Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • Primary water stress corrosion cracking (PWSCC) has been found in the weld region of the nuclear power plant. Welding can produce tensile residual stress. Tensile residual stress contributes to the initiation and growth of PWSCC. It is important to estimate weld residual stress accurately to predict or prevent the initiation and growth of PWSCC. This paper shows the results of finite element analysis and measurement experiment for weld residual stress. For the study, four kinds of specimen were fabricated with the materials used in the nuclear power plant. Residual stresses were measured by four kinds of methods of hole drilling, x-ray diffraction, instrumented indentation and sectioning. Through the study, numerical analysis and measurement results were compared and the characteristics of each measurement technique were observed.

Fracture analysis of weld specimen using 3-dimensional finite element method (3차원 유한요소법을 이용한 용접시편의 파괴 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF