• Title/Summary/Keyword: Weld growth

Search Result 193, Processing Time 0.019 seconds

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Studies on the Mutation of Aspergillus niger (흑국균(黑麴菌)의 인공변이(人工變異)에 관(關)한 연구(硏究))

  • Park, Yoon-Joong;Sohn, Cheon-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 1982
  • Several mutants were isolated from the parent strain of Aspergillus niger CF: the first mutant strain CF-11 was obtained by UV irradiation, and the second mutant strain CF-21 and CF-22 were from NTG (N-methyl-N'-nitroso-N-nitroso-guanidine) treatment on the CF-11. These mutants were characterized, and their enzyme and acid production on wheat bran Koji and wheat flour Koji were studied. Asp. niger CF-22 mutant appeared to be tan type which conidial heads were discolored. It's glucoamylase activity was inreased approximately two times and its ${\alpha}-amylase$ about 50 percent as compared with that of the parent strain of Asp. niger CF, when grown on wheat bran Koji under the optimal conditions. Asp. niger CF-21 mutant showed slower growth rate and poor sporulation than the wild type, although its conidial heads were not discolored. Approximately 4-fold increment in its acid production was observed as compared with the weld type. The activities of glucoamylase and ${\alpha}-amylase$ of the Asp. niger CF-22 and CF-21 mutants were higher than those of the wild type, but their protease activity was rather lower. The maximum production of glucoamylase by the Asp. niger CF-22 mutant was obtained after 2 to 3 days incubation on wheat bran at 30 to $35^{\circ}C;$ ${\alpha}-amylase$2 days incubation at 30 to $35^{\circ}C$. The maximal levels of acid production by the mutant CF-21 was appeared after 2 days incubation on wheat bran Koji, and after 3 days on wheat flour Koji at $30^{\circ}C$. Little differences in the levels of acid production were observed between on wheat bran and flour Koji.

  • PDF