• Title/Summary/Keyword: Weld Quality Control

Search Result 134, Processing Time 0.02 seconds

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

A Novel Control Method of Resistance Spot Welding Inverter using Dynamic Resistance Characteristics for Weld Quality Improvement (용접품질 향상을 위한 저항 스폿 용접용 인버터의 동저항 특성을 이용한 새로운 제어기법)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.491-497
    • /
    • 2015
  • This study proposes a new control method for a resistance spot welding inverter to improve weld quality. The proposed method is based on the dynamic resistance characteristics of steel sheets to be welded. A point in the second peak value of the dynamic resistance occurs during one shot of the welding current flow. A constant voltage control is applied from zero to the peak point, and a constant current control is adopted from the peak point to the end of the shot. The mixed mode control of the constant voltage and current guarantees high weld quality. Experiments are conducted with a 5 kA power supply and 0.5 mm steel sheets to compare quality. Experimental results show that weld quality is improved more than 10 times that of the conventional control method.

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

A Study on Development of Automatic Weld-Seam Tracking System using Vision Sensor (시각센서를 이용한 용접선 자동추적시스템의 개발에 관한 연구)

  • 배강열;이지형
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.79-88
    • /
    • 1996
  • For improvement in productivity and weld quality, weld seam tracking and welding parameter control are very essential in the welding of a structure which can not be cxactly fit-up due to mismatch, discontinous gap, deflection, etc.. In this study, an automatic weld seam tracking system is developed for I-butt joint structure, and the system consists of XYZ working table, vision sensor and user interface program. In the developed vision sensor system, an image projection algorithm for weld-line detection and an adaptive current control algorithm for gap variation were implemented. The user interface program developed in this study by basing on the objct oriented concept could provide very convenient way to utilize the tracking system with the pull-down menu driven structure. The developed system showed a good seam tracking and weld quality control capability corresponding to deflected weld lines and gap variations.

  • PDF

A Study on On-Line Quality Monitoring Using Arc Light in Gas Metal Arc Welding (GMAW에서 아크 빛을 이용한 실시간 용접품질 모니터링에 관한 연구)

  • 조택동;양상민
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.82-86
    • /
    • 2000
  • Gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance weld automation. In GMAW, weld quality is closely related to arc stability especially. In this paper, arc light signal is measured and spectrum analyzed to the detect the variation of the weld quality. The FFT of the signal showed that the amplitude variance of FFT power spectrum was very large in poor weld process such as the decrease of weld bead width and height. The results show that it is possible to detect the weld defect position in weld process.

  • PDF

Control of weld pool sizes in GMA welding processes using neural networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태근;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.531-536
    • /
    • 1992
  • In GMA welding processes, monitoring and control of weld quality are extremely difficult problems. This paper describes a neural network-based method for monitoring and control of weld pool sizes. First, weld pool sizes are estimated via a neural estimator using multi-point surface temperatures, which are strongly related to the formation of weld pool, and then controlled using the estimated pool sizes. Two types of controllers using the pool size estimator are designed and tested. To evaluate the performance of the designed controllers, a series of simulation studies was performed.

  • PDF

A study on the Estimate of Weld Bead Shape and the Compensation of Welding Parameters by Considering Weld Defects in Horizontal Fillet Welding (수평필릿용접시 용접부형상의 예측과 용접결함발생시 적절한 용접변수의 보상에 관한연구)

  • 김관형;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.105-114
    • /
    • 1999
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important Parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding recess adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

Effects of Initial AE Counts During Plastic Deformation in Friction \elding of Dissimilar Steel Tubes on the Weld Quality Control (이종강관 마찰용접의 소성변형 중 발생된 초기 AE양이 용접품질 제어에 미치는 영향에 관한 연구)

  • 오세규;김동조;정락기
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 1983
  • Both in-process quality control and reliability of the weld is one of the major concerns is applying friction welding. No reliable nondestructive monitoring method is available at present to determine the weld quality particularly in process of production. So that, this paper presents an experimental examination and quantitative analysis for the effects of initial acoustic emission(AE) counts on the weld strength relating to the rotating speed as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was well confirmed that the initial AE counts occurring during plastic deformation period of welding were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds, tube-to-tube (SM 20 C to STS 304) and then an AE technique using the initial AE counts can be reliably applied to in-process strength monitoring of the weld.

  • PDF

Study on the Simultaneous Control of the Seam Tracking and Leg Length in a Horizontal Fillet Welding Part 2: Seam Tracking

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • For the horizontal fillet welding with one plate in a vertical position, there will be a higher tendency of weld metal falling down rather than for the butt-welding in flat position. Such phenomenon could bring about the overlap or deflection of weld pool, and consequently induce the poor mechanical strength of weldments. Therefore, a precise position control of welding torch in conjunction with the weld qualify plays an important role in welding robot applications. In the present study, an experimental method was proposed for deriving a mathematical model between the leg length and the welding conditions. Finally, an algorithm was proposed for weld seam tracking and improvement of the weld quality. The reliability of the proposed algorithm was evaluated through various experiments, which showed that the proposed algorithm can be very effective for tracking the weld line and simultaneously achieving the sound weld bead.

  • PDF

A Study on the Efficient Welding Control System using Fuzzy-Neural Algorithm (퍼지-뉴럴 알고리즘을 이용한 효과적인 용접제어스시템에 관한 연구)

  • Kim, Gwon-hyung;Kim, Tae-yeong;Lee, Sang-bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.189-193
    • /
    • 1997
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding process adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF