• Title/Summary/Keyword: Weld Metal HAZ

Search Result 208, Processing Time 0.017 seconds

Effect of PWHT and stress ratio on fatigue behavior of welded joints in steel (강용접부의 피로거동에 미치는 용접후열처리 및 응력비의 영향)

  • 김경수;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.53-61
    • /
    • 1987
  • Post weld heat treatment(PWHT) is usually carried out to remove the residual stress and to improve the microstructure and mechanical properties of welded joints. By the way, welding structure transformed owing to PWHT and reheating for repair loads the random cycles fatigue as offshore welding structure of constant low cycle fatigue as pressure vessel, and then, pre-existing flaws or cracks exist in a structural component and those cracks grow under cyclic loading. Therefore, the effects of PWHT and stress ratio on fatigue crack growth behaviors were studied on the three regions such as HAZ, sub-critical HAZ and deposit metal of welded joints in SM53 steel. Fatigue crack growth behavior of as-weld depended on microstructure and fatigue crack growth rate of HAZ was the lowest at eac region, but after PWHT it was somewhat higher than that of as-wel. In case of applying the stress($10kg/mm^2$) during PWHT, fatigue crack growth resistance tended to increase in the overall range of .DELTA.K.

  • PDF

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

Effects of microstructure and welding heat input on the toughness of weldable high strength steel weldments (용접구조용 고장력강의 용접부 인성에 미치는 미세 조직과 용접 입열량의 영향)

  • 장웅성;방국수;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • This study was undertaken to evaluate the allowable welding heat input range for high strength steels manufactured by various processes and to compare the weldability of TMCP steel for high heat input welding with that of conventional Ti-added normalized steel. The allowable welding heat input ranges for conventional 50kg/$mm^2$ steel to guarantee D or E grade of ship structural steel were below 150 and 80kJ/cm respectively. Such a limit in welding heat input was closely related with the formation of undesirable microstructures, such as grain boundary ferrite and ferrite side plate in the coarse grain HAZ. In case of 60 and 80kg/$mm^2$ quenched and tempered steels, for securing toughness in weldments over toughness requirements for base metal, each welding heat input had to be restricted below 60 and 40kJ/cm, that was mainly due to coarsened polygonal ferrite in weld metal and lower temperature transformation products in coarse grain HAZ. The TMCP steel could be appropriate as a grade E ship hull steel up to 200kJ/cm, but the Ti-added normalized steel could be applied only below 130kJ/cm under the same rule. This difference was partly owing to whether uniform and fine intragranular ferrite microstructure was well developed in HAZ or not.

  • PDF

A Case Study of Creep Crack Growth Remaining life Assessment for High Temperature Pressure Equipments (고온용 압력용기의 크리프 균열성장 잔여수명평가 사례 연구)

  • 백운봉;이해무;박종서;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Creep crack growth lift of high temperature pressure equipments was assessed for various crack locations and for various material properties. Surface cracks at the inner and outer surface of the vessel in the axial and circumferential directions were considered. The crack was located in the weld metal, in the parent metal or at the weld interface. Results shored that the crack at the weld interface was the most dangerous one. The crack located outside is weaker than that located inside. Safety factors of the case in which improper material properties were used the to unavailability of the correct material properties were discussed.

  • PDF

Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy (5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel (EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향)

  • Choi, Woo-Hyuk;Cho, Sung-Kyu;Choi, Won-Kyu;Ko, Sang-Gi;Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.

Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel (Al-Si Coated Boron Steel과 Zn Coated DP Steel 이종금속의 DISK Laser 용접부 미세조직과 경도)

  • An, Yong-Gyu;Kang, Chung-Yun;Kim, Young-Su;Kim, Cheol-Hee;Han, Tae-Kyo
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.90-98
    • /
    • 2011
  • Al-Si coated Boron steel and Zn coated DP steel were welded using DISK laser and the microstructure and hardness of the weld were investigated. Full penetration was obtained, when the welding speed was lower than 4m/min. In the specimen welded with laser power of 3 kW and welding speed of 2 m/min, the hardness was the highest in the heat affect zone in the boron steel (HAZ-B) and that of the heat affect zone in the DP steel (HAZ-D) was lower than HAZ-B. The hardness of fusion zone was in between those of HAZ-B and HAZ-D. The decreased hardness from each HAZ to base metal(BM) could be explained that ferrite contents increases when access to the BM. The variation of hardness in the welds could be explained by the difference of microstructure, that is, full martensite in HAZ-B, mixture of martensite and bainite in the fusion zone, and the mixture of martensite, ferrite and bainite in HAZ-D.

TMCP 강의 용접열영향부 인성에 관한 연구

  • 신민태;윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.43-49
    • /
    • 1986
  • Weldability of the TMCP steel manufactured by controlled rolling followed by accelerated cooling process was investigated. For comparison, two other steel plates produced by different manufacturing processes were selected; normalized and controlled rolled. Tandem submerged arc welding with both side one run technique was carried out. The results of this study can be summarized as follows; TMCP steel having the lowest carbon equivalent shows the best combination of mechanical properties, not only in the base metal but also in the heat affected zone. In the HAZ, the accelerated colling effect imarted on the trengthis releved by the weld thermal cycles, and thus the strength of the welded joint decrease substantially accompanied with the fracture in the HAZ. On the other hand, not only the softening but the fine microstructure can preserve the high toughness of TMCP steel in the HAZ.

  • PDF