• Title/Summary/Keyword: Weissella paramesenteroides

Search Result 9, Processing Time 0.019 seconds

Anti-Melanogenic Effect of Cannabis sativa Stem Extracts Fermented with Weissella paramesenteroides

  • Taehyun Kim;Jin-Woo Kim;Huitae Min;Jisu Park;Taejung Kim;Geun-Hyeong Kim;Byung-Joon Park;Jeong Kook Kim;Young-Tae Park;Jin-Chul Kim;Jungyeob Ham
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.250-256
    • /
    • 2023
  • Cannabis sativa (CS) has been in the spotlight not only for its medical uses but also as a raw material for cosmetics. As fermented cosmetics are known to have various health benefits, they have been extensively researched. Here, we investigated the characteristics of CS stems fermented using various gut microbes. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and melanin content analysis revealed that melan-a cells containing CS stems fermented with Weissella paramesenteroides (CSWP) showed considerably reduced melanin content. Additionally, CSWP downregulated the expression of several melanogenesis factors, tyrosinase-related protein-1, and tyrosinase-related protein-2. This study suggests that the anti-melanogenic effect of CSWP could provide a new basis for the development of skin-lightening agents.

Isolation and Identification of Weissella kimchii from Green Onion by Cell Protein Pattern Analysis

  • Kim, Tae-Woon;Lee, Ji-Yeon;Song, Hee-Sung;Park, Jong-Hyun;Ji, Geun-Eog;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.105-109
    • /
    • 2004
  • This study was conducted to investigate the potential origin of Weissella species, which were found in ingredients of kimchi, such as salted Chinese cabbage, radish, green onion, red pepper powder, pickled shrimps, garlic, and ginger. Ten strains of Weissella species (Weissella thailandensis, W. kimchii, W. koreensis, W. minor, W. halotolerans, W. hellenica, W. kandleri, W. confusa, W. viridescens, and W. paramesenteroides) and lactic acid bacteria isolated from ingredients of kimchi were analyzed by SDS-PAGE of whole-cell proteins. Several strains with patterns identical to those of Weissella kimchii were isolated from green onion. On the basis of biochemical characteristics and 16S rDNA sequence comparisons, these strains were identified as Weissella kimchii, suggesting green onion as a major origin of Weissella kimchii found in kimchi.

Isolation of Leuconostoc and Weissella Species Inhibiting the Growth of Lactobacillus sakei from Kimchi (김치로부터 Lactobacillus sakei 생육저해 Leuconostoc 및 Weissella 속 균주의 분리)

  • Lee, Kwang-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Kimchi is a group of traditional fermented vegetable foods in Korea and known to be the product of a natural mixed-fermentation process carried out principally by lactic acid bacteria (LAB). According to microbial results based on conventional identification, Leuconostoc mesenteroides and Lactobacillus plantarum were considered to be responsible for the good taste and over-ripening of kimchi, respectively. However, with the application of phylogenetic identification, based on 16S ribosomal RNA gene similarities, a variety of Leuconostoc and Lactobacillus species not detected in the previous studies have been isolated, together with a species in the genus Weissella. Additionally, Lactobacillus sakei has been accepted as the most populous LAB in over-ripened kimchi. In this study, Leuconostoc and Weissella species inhibiting the growth of Lb. sakei were isolated from kimchi for future applications to do with kimchi fermentation. From 25 kimchi samples, 378 strains in the genera Leuconostoc and Weissella were isolated and 68 strains identified as Lc. mesenteroides, Lc. citreum, Lc. lactis, W. cibaria, W. confusa, and W. paramesenteroides exhibited growth inhibition against Lb. sakei. Most of the strains also had antagonistic activities against Lb. brevis, Lb. curvatus, Lb. paraplantarum, Lb. pentosus, and Lb. plantarum. Their antagonistic activities against Lb. sakei were more remarkable at lower temperatures of incubation.

Application of 16S rDNA PCR-RFLP Analysis for the Rapid Identification of Weissella Species (Weissella 속 유산균의 빠른 동정을 위한 16S rDNA PCR-RFLP 분석법의 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.455-460
    • /
    • 2010
  • A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis was applied to detect and identify ten Weissella spp. frequently found in kimchi. The previously reported genus-specific primers designed from 16S rDNA sequences of Weissella spp. were adopted but PCR was performed at the increased annealing temperature by $4^{\circ}C$. The sizes of amplified PCR products and restricted fragments produced by AluI, MseI, and BceAI endonucleases were well correspond with the expected sizes. W. kandleri, W. koreensis, W. confusa, W. minor, W. viridescens, W. cibaria, and W. soli were distinguished by AluI and MseI and W. hellenica and W. paramesenteroides were identified by BceAI. W. thailandensis was distinguished when restriction pattern of other species was compared but identified by the single use of MspI.

Effect of Protective Compounds on the Survival, Electrolyte Leakage, and Lipid Degradation of Freeze-Dried Weissella paramesenteroides LC11 During Storage

  • Yao, Amenan A.;Wathelet, Bernard;Thonart, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.810-817
    • /
    • 2009
  • The effect of cryoprotectants (maltodextrin+glycerol) and cryoprotectants+antioxidant [ascorbic acid and/or butylated hydroxytoluene (BHT)] mixtures on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage was investigated and compared with that of the control (cells without additives) over a 90-day storage period at 4 or $20^{\circ}C$ in glass tubes with water activity ($a_w$) of 0.23. The survival, electrolyte leakage, and lipid degradation were evaluated through colony counts, electrical conductivity, and thiobarbituric acid reactive substances (TBARS) content, respectively. The fatty acids composition was determined by gas chromatography, in both the total lipid extract and the polar lipid fraction, and compared with that of the control after the 90-day storage period. As the storage proceeded, increases in leakage value and TBARS content, as well as a decrease in viability, were observed. After 90 days of storage, the major fatty acids found in both the total lipid extract and the polar lipid fraction were palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. The survival, leakage value, TBARS content and 18:2/16:0 or 18:3/16:0 ratio were the greatest for the protected strain held at $4^{\circ}C$. Cells with the cryoprotectants+BHT mixture showed the highest percentage of survival and 18:2/16:0 or 18:3/16:0 ratio in both lipid extracts, as well as the lowest leakage value and TBARS content after the 90-day storage period. Drying cells with the cryoprotectants+BHT mixture considerably slowed down polar lipid degradation and loss of membrane integrity, resulting in improved viability during storage.

Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS

  • Ahmadsah, Lenny S.F.;Kim, Eiseul;Jung, Youn-Sik;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Samples of Laru (a fermentation starter) obtained from the upper part of Borneo Island were analyzed for their lactic acid bacteria (LAB) and fungal diversity using both a culture-independent method (PCR-DGGE) and culture-dependent methods (SDS-PAGE and MALDI-TOF MS). Pediococcus pentosaceus, Lactobacillus brevis, Saccharomycopsis fibuligera, Hyphopichia burtonii, and Kodamaea ohmeri were detected by all three methods. In addition, Weissella cibaria, Weissella paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Rhizopus oryzae/Amylomyces rouxii, Mucor indicus, and Candida intermedia were detected by PCR-DGGE. In contrast, Lactobacillus fermentum, Lactobacillus plantarum, Pichia anomala, Candida parapsilosis, and Candida orthopsilosis were detected only by the culture-dependent methods. Our results indicate that the culture-independent method can be used to determine whether multiple laru samples originated from the same manufacturing region; however, using the culture-independent and the two culture-dependent approaches in combination provides a more comprehensive overview of the laru microbiota.

The Growth-Promoting Effect of Pomegranate Concentrates on Lactic Acid Bacteria and Their Application to Yogurt (석류 농축액의 유산균에 대한 성장촉진효과와 요구르트의 적용)

  • Yun Jeong Go;Woan Sub Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.76-85
    • /
    • 2023
  • This study investigated the effect of the addition of pomegranate concentrate to yogurt on the growth of pathogenic and lactic acid bacteria. The concentration of the MRS broth was adjusted to one-half and used for an experiment. Pomegranate concentrate was added at concentrations of 4%, 2%, 1%, and 0.5%, which significantly promoted the growth of Lacto-coccus cremoris, Weissella cibaria, Weissella paramesenteroides, Lactobacillus plantarum, Lactobacillus acidophilus, Streptococcus thermophillus, Lactobacillus bulgaricus, and Lactobacillus lactis. The growth of lactic acid bacteria increased with higher concentrations of pomegranate. However, the addition of pomegranate concentrate inhibited the growth of Escherichia coli KCCM11587, E. coli KCCM11591, E. coli KCCM11596, and E. coliKCCM11600. Yogurt with added pomegranate concentrate demonstrated optimal conditions compared to that of the control without the addition. Particularly, the viable cell count of lactic acid bacteria was significantly higher in the yogurt with pomegranate concentrate. Furthermore, the viability of the lactic acid bacteria in the yogurt with pomegranate concentrate was higher than that of the control without the addition of concentrate during storage.

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

Probiotic Properties of Lactobacillus spp. Isolated from Gajami Sikhae (가자미식해에서 분리한 유산균의 프로바이오틱스 특성)

  • Eun-Yeong Bae;Gi-Un Cho;Ji-Hye Kim;Sung-Keun Jung;Young-Je Cho;Byung-Oh Kim
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.334-342
    • /
    • 2023
  • Forty species of lactic acid bacteria isolated from gajami sikhae were identified as Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus brevis, and Weissella paramesenteroides. 10 of the 40 strains were selected and used for the test. In this study, experiments such as those using acid and artificial gastric juice resistance, bile acid resistance, autoaggregation, coaggregation, and cell surface hydrophobicity were conducted to utilize lactic acid bacteria separated from gajami sikhae as probiotics. The separated lactic acid strains showed high survival rates through displaying resistance to acidic and artificial gastric juices; L. plantarum GS11 showed the best resistance. Also, as a result of a measurement of bile acid resistance, all lactic acid bacteria stocks showed survival of more than 100% with a probiotic number of 108 to 109 log CFU/ml. After evaluating cohesion to indirectly measure cell surface adhesion, autoaggregation ability was shown to be more than 46%. Measurement of xylene adhesion for cell surface hydrophobicity evaluation revealed better cell adhesion than B. subtilis, which has 32.2% hydrophobicity in isolated lactic acid strains. Antibacterial force measurement found antibacterial activity in lactic acid bacteria, excluding L. plantarum GS12 and L. plantarum GS13. Therefore, it was judged that lactic acid bacteria separated from gajami sikhae could be used as probiotics with various probiotic properties.